K3型的嵌套品种

M. Bernardara, Enrico Fatighenti, L. Manivel
{"title":"K3型的嵌套品种","authors":"M. Bernardara, Enrico Fatighenti, L. Manivel","doi":"10.5802/JEP.156","DOIUrl":null,"url":null,"abstract":"Using geometrical correspondences induced by projections and two-steps flag varieties, and a generalization of Orlov's projective bundle theorem, we relate the Hodge structures and derived categories of subvarieties of different Grassmannians. We construct isomorphisms between Calabi-Yau subHodge structures of hyperplane sections of Gr(3,n) and those of other varieties arising from symplectic Grassmannian and/or congruences of lines or planes. Similar results hold conjecturally for Calabi-Yau subcategories: we describe in details the Hodge structures and give partial categorical results relating the K3 Fano hyperplane sections of Gr(3,10) to other Fano varieties such as the Peskine variety. Moreover, we show how these correspondences allow to construct crepant categorical resolutions of the Coble cubics.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nested varieties of K3 type\",\"authors\":\"M. Bernardara, Enrico Fatighenti, L. Manivel\",\"doi\":\"10.5802/JEP.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using geometrical correspondences induced by projections and two-steps flag varieties, and a generalization of Orlov's projective bundle theorem, we relate the Hodge structures and derived categories of subvarieties of different Grassmannians. We construct isomorphisms between Calabi-Yau subHodge structures of hyperplane sections of Gr(3,n) and those of other varieties arising from symplectic Grassmannian and/or congruences of lines or planes. Similar results hold conjecturally for Calabi-Yau subcategories: we describe in details the Hodge structures and give partial categorical results relating the K3 Fano hyperplane sections of Gr(3,10) to other Fano varieties such as the Peskine variety. Moreover, we show how these correspondences allow to construct crepant categorical resolutions of the Coble cubics.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

利用投影和两步标志变体的几何对应关系,推广Orlov投影束定理,给出了不同Grassmannians子变体的Hodge结构及其派生范畴。我们构造了Gr(3,n)的超平面截面的Calabi-Yau子hodge结构与其他由线或平面的对称和/或同余引起的变体结构之间的同构。类似的结果也适用于Calabi-Yau子范畴:我们详细描述了Hodge结构,并给出了Gr(3,10)的K3 Fano超平面剖面与其他Fano变体(如Peskine变体)之间的部分分类结果。此外,我们还展示了这些对应如何允许构建Coble立方体的蠕变分类分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nested varieties of K3 type
Using geometrical correspondences induced by projections and two-steps flag varieties, and a generalization of Orlov's projective bundle theorem, we relate the Hodge structures and derived categories of subvarieties of different Grassmannians. We construct isomorphisms between Calabi-Yau subHodge structures of hyperplane sections of Gr(3,n) and those of other varieties arising from symplectic Grassmannian and/or congruences of lines or planes. Similar results hold conjecturally for Calabi-Yau subcategories: we describe in details the Hodge structures and give partial categorical results relating the K3 Fano hyperplane sections of Gr(3,10) to other Fano varieties such as the Peskine variety. Moreover, we show how these correspondences allow to construct crepant categorical resolutions of the Coble cubics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信