演示50ps每位置差分脉冲位置调制数据传输

O. Selis, S. Migla, P. E. Sics, M. Zeltins, S. Spolitis, A. Aboltins
{"title":"演示50ps每位置差分脉冲位置调制数据传输","authors":"O. Selis, S. Migla, P. E. Sics, M. Zeltins, S. Spolitis, A. Aboltins","doi":"10.1109/AIEEE58915.2023.10134802","DOIUrl":null,"url":null,"abstract":"To prolong the lifespan of devices with a limited power budget, efficient modulation schemes, such as pulse position modulation (PPM), can be employed. High-order differential pulse position modulation (DPPM), which can be efficiently demodulated using an event timer, presents advantages over other PPM modulation methods because it can provide higher data rates and does not require synchronization. This research aims to demonstrate data transmission using high-order DPPM signal in a laboratory environment and measure bit error ratio (BER) for position widths 50–200 ps. In the theoretical part, an assessment of data transmission rate dependence from the position count and position width of DPPM signal with guard time is presented. Moreover, a theoretical comparison in terms of power efficiency and maximum data rate with other types of PPM, such as transmitted reference pulse-position modulation (TR-PPM), is made. In the experimental part, the performance measurements of DPPM communication system consisting of arbitrary waveform generator (AWG) as DPPM transmitter and Eventech A033-ET/USB event timer as digital-to-time converter (DTC) of DPPM receiver are presented.","PeriodicalId":149255,"journal":{"name":"2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of 50 ps Per-Position Differential Pulse Position Modulation Data Transmission\",\"authors\":\"O. Selis, S. Migla, P. E. Sics, M. Zeltins, S. Spolitis, A. Aboltins\",\"doi\":\"10.1109/AIEEE58915.2023.10134802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To prolong the lifespan of devices with a limited power budget, efficient modulation schemes, such as pulse position modulation (PPM), can be employed. High-order differential pulse position modulation (DPPM), which can be efficiently demodulated using an event timer, presents advantages over other PPM modulation methods because it can provide higher data rates and does not require synchronization. This research aims to demonstrate data transmission using high-order DPPM signal in a laboratory environment and measure bit error ratio (BER) for position widths 50–200 ps. In the theoretical part, an assessment of data transmission rate dependence from the position count and position width of DPPM signal with guard time is presented. Moreover, a theoretical comparison in terms of power efficiency and maximum data rate with other types of PPM, such as transmitted reference pulse-position modulation (TR-PPM), is made. In the experimental part, the performance measurements of DPPM communication system consisting of arbitrary waveform generator (AWG) as DPPM transmitter and Eventech A033-ET/USB event timer as digital-to-time converter (DTC) of DPPM receiver are presented.\",\"PeriodicalId\":149255,\"journal\":{\"name\":\"2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIEEE58915.2023.10134802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE58915.2023.10134802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在有限的功率预算下延长器件的使用寿命,可以采用有效的调制方案,例如脉冲位置调制(PPM)。高阶差分脉冲位置调制(DPPM)可以使用事件计时器进行有效解调,与其他PPM调制方法相比,它具有优势,因为它可以提供更高的数据速率,并且不需要同步。本研究旨在演示高阶DPPM信号在实验室环境下的数据传输,并测量位置宽度为50-200 ps时的误码率(BER)。在理论部分,提出了DPPM信号的位置计数和位置宽度随保护时间对数据传输速率的依赖评估。此外,在功率效率和最大数据速率方面,与其他类型的PPM,如传输参考脉冲位置调制(TR-PPM)进行了理论比较。实验部分给出了由任意波形发生器(AWG)作为DPPM发送器,Eventech A033-ET/USB事件定时器作为DPPM接收器的数字时间转换器(DTC)组成的DPPM通信系统的性能测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of 50 ps Per-Position Differential Pulse Position Modulation Data Transmission
To prolong the lifespan of devices with a limited power budget, efficient modulation schemes, such as pulse position modulation (PPM), can be employed. High-order differential pulse position modulation (DPPM), which can be efficiently demodulated using an event timer, presents advantages over other PPM modulation methods because it can provide higher data rates and does not require synchronization. This research aims to demonstrate data transmission using high-order DPPM signal in a laboratory environment and measure bit error ratio (BER) for position widths 50–200 ps. In the theoretical part, an assessment of data transmission rate dependence from the position count and position width of DPPM signal with guard time is presented. Moreover, a theoretical comparison in terms of power efficiency and maximum data rate with other types of PPM, such as transmitted reference pulse-position modulation (TR-PPM), is made. In the experimental part, the performance measurements of DPPM communication system consisting of arbitrary waveform generator (AWG) as DPPM transmitter and Eventech A033-ET/USB event timer as digital-to-time converter (DTC) of DPPM receiver are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信