磁涡流态在磁阻传感器中的应用(会议报告)

Spintronics XII Pub Date : 2019-09-10 DOI:10.1117/12.2525294
H. Brückl, Herbert Weitensfelder, Armin Satz, K. Pruegl, S. Luber, W. Raberg, J. Zimmer, D. Suess
{"title":"磁涡流态在磁阻传感器中的应用(会议报告)","authors":"H. Brückl, Herbert Weitensfelder, Armin Satz, K. Pruegl, S. Luber, W. Raberg, J. Zimmer, D. Suess","doi":"10.1117/12.2525294","DOIUrl":null,"url":null,"abstract":"Magnetoresistive sensors based on giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) play a major role towards the miniaturization in the industrial society. Typically, spin-valve-type magnetoresistive sensors are embedded in a Wheatstone bridge configuration with rectangular, meander-like or elliptically shaped thin film elements. Such elements usually switch via multi-domain, C- or S-shaped magnetization states and, therefore, often exhibit an open non-linear hysteresis curve. Linearity and hysteretic effects are key features in the improvement of such sensors.\nWe will present a different approach by using circularly shaped elements exhibiting a different magnetization state of a magnetic vortex [1]. This is one of the fundamental magnetization ground states occurring in disk-shaped thin film elements and is characterized by minimization of the demagnetizing energy at the expense of exchange energy.\nExperimental data were generated on electrically contacted GMR and TMR disks which were fabricated by optical lithography. The following advantages will be discussed and compared to standard elliptical sensor elements. (a) The vortex state shows essentially no hysteresis in the minor loop. (b) Since the vortex nucleation happens prior to the zero field, the M(H=0)=0 crossing is independent of history. (c) The critical fields can be easily controlled by the element geometry. (d) The noise is low.\nAll characteristic experimental values have been determined in dependence of free layer thickness, disk diameter and temperature. These findings are discussed in the frame of the semi-analytical rigid-vortex-model [2] and micromagnetic simulations. \nThe financial support by the Austrian Federal Ministry of Science, Research and Economy and the Christian Doppler Research Association in Austria is gratefully acknowledged.\n\n[1] D. Suess, A. Bachleitner-Hofmann, A. Satz, H. Weitensfelder, C. Vogler, F. Bruckner, C. Abert, K. Prugl, J. Zimmer, C. Huber, S. Luber, W. Raberg, T. Schrefl, H. Bruckl, „Topologically Protected Vortex Structures to Realize Low-Noise Magnetic Sensors with High Linear Range”, Nature Electronics 1, 362 (2018)\n[2] K. Y. Guslienko et al., “Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays”, Phys. Rev. B 65 (2001)","PeriodicalId":420411,"journal":{"name":"Spintronics XII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic vortex state applied in magnetoresistive sensors (Conference Presentation)\",\"authors\":\"H. Brückl, Herbert Weitensfelder, Armin Satz, K. Pruegl, S. Luber, W. Raberg, J. Zimmer, D. Suess\",\"doi\":\"10.1117/12.2525294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoresistive sensors based on giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) play a major role towards the miniaturization in the industrial society. Typically, spin-valve-type magnetoresistive sensors are embedded in a Wheatstone bridge configuration with rectangular, meander-like or elliptically shaped thin film elements. Such elements usually switch via multi-domain, C- or S-shaped magnetization states and, therefore, often exhibit an open non-linear hysteresis curve. Linearity and hysteretic effects are key features in the improvement of such sensors.\\nWe will present a different approach by using circularly shaped elements exhibiting a different magnetization state of a magnetic vortex [1]. This is one of the fundamental magnetization ground states occurring in disk-shaped thin film elements and is characterized by minimization of the demagnetizing energy at the expense of exchange energy.\\nExperimental data were generated on electrically contacted GMR and TMR disks which were fabricated by optical lithography. The following advantages will be discussed and compared to standard elliptical sensor elements. (a) The vortex state shows essentially no hysteresis in the minor loop. (b) Since the vortex nucleation happens prior to the zero field, the M(H=0)=0 crossing is independent of history. (c) The critical fields can be easily controlled by the element geometry. (d) The noise is low.\\nAll characteristic experimental values have been determined in dependence of free layer thickness, disk diameter and temperature. These findings are discussed in the frame of the semi-analytical rigid-vortex-model [2] and micromagnetic simulations. \\nThe financial support by the Austrian Federal Ministry of Science, Research and Economy and the Christian Doppler Research Association in Austria is gratefully acknowledged.\\n\\n[1] D. Suess, A. Bachleitner-Hofmann, A. Satz, H. Weitensfelder, C. Vogler, F. Bruckner, C. Abert, K. Prugl, J. Zimmer, C. Huber, S. Luber, W. Raberg, T. Schrefl, H. Bruckl, „Topologically Protected Vortex Structures to Realize Low-Noise Magnetic Sensors with High Linear Range”, Nature Electronics 1, 362 (2018)\\n[2] K. Y. Guslienko et al., “Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays”, Phys. Rev. B 65 (2001)\",\"PeriodicalId\":420411,\"journal\":{\"name\":\"Spintronics XII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spintronics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2525294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spintronics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2525294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于巨磁阻(GMR)或隧道磁阻(TMR)的磁阻传感器在工业社会的小型化中发挥着重要作用。通常,自旋阀型磁阻传感器嵌入惠斯顿电桥结构中,具有矩形、曲线形或椭圆形薄膜元件。这些元件通常通过多域、C形或s形磁化状态切换,因此经常表现出开放的非线性磁滞曲线。线性和滞后效应是改进此类传感器的关键特征。我们将提出一种不同的方法,通过使用圆形元件显示磁涡流的不同磁化状态[1]。这是发生在圆盘状薄膜元件中的基本磁化基态之一,其特征是以牺牲交换能为代价使退磁能最小化。在采用光刻技术制备的电接触GMR和TMR光盘上生成实验数据。以下优点将被讨论,并与标准椭圆传感器元件进行比较。(a)涡旋状态在小回路中基本没有迟滞。(b)由于涡旋成核发生在零场之前,因此M(H=0)=0交叉与历史无关。(c)关键场可以很容易地通过单元几何来控制。(d)噪音低。所有的特征实验值都与自由层厚度、圆盘直径和温度有关。这些发现在半解析刚性涡模型[2]和微磁模拟的框架内进行了讨论。感谢奥地利联邦科学、研究和经济部以及奥地利基督教多普勒研究协会的财政支持。[1]D. Suess, A. Bachleitner-Hofmann, A. Satz, H. Weitensfelder, C. Vogler, F. Bruckner, C. abbert, K. Prugl, J. Zimmer, C. Huber, S. Luber, W. rabberg, T. Schrefl, H. Bruckl,“基于拓扑保护的涡旋结构实现高线性范围低噪声磁传感器”,自然电子学报,2013,36 (2018)[2]K. Y. Guslienko等,“亚微米铁磁点阵列中涡旋成核、位移和消能的磁化反演”,物理学报。修订版b65 (2001)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic vortex state applied in magnetoresistive sensors (Conference Presentation)
Magnetoresistive sensors based on giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) play a major role towards the miniaturization in the industrial society. Typically, spin-valve-type magnetoresistive sensors are embedded in a Wheatstone bridge configuration with rectangular, meander-like or elliptically shaped thin film elements. Such elements usually switch via multi-domain, C- or S-shaped magnetization states and, therefore, often exhibit an open non-linear hysteresis curve. Linearity and hysteretic effects are key features in the improvement of such sensors. We will present a different approach by using circularly shaped elements exhibiting a different magnetization state of a magnetic vortex [1]. This is one of the fundamental magnetization ground states occurring in disk-shaped thin film elements and is characterized by minimization of the demagnetizing energy at the expense of exchange energy. Experimental data were generated on electrically contacted GMR and TMR disks which were fabricated by optical lithography. The following advantages will be discussed and compared to standard elliptical sensor elements. (a) The vortex state shows essentially no hysteresis in the minor loop. (b) Since the vortex nucleation happens prior to the zero field, the M(H=0)=0 crossing is independent of history. (c) The critical fields can be easily controlled by the element geometry. (d) The noise is low. All characteristic experimental values have been determined in dependence of free layer thickness, disk diameter and temperature. These findings are discussed in the frame of the semi-analytical rigid-vortex-model [2] and micromagnetic simulations. The financial support by the Austrian Federal Ministry of Science, Research and Economy and the Christian Doppler Research Association in Austria is gratefully acknowledged. [1] D. Suess, A. Bachleitner-Hofmann, A. Satz, H. Weitensfelder, C. Vogler, F. Bruckner, C. Abert, K. Prugl, J. Zimmer, C. Huber, S. Luber, W. Raberg, T. Schrefl, H. Bruckl, „Topologically Protected Vortex Structures to Realize Low-Noise Magnetic Sensors with High Linear Range”, Nature Electronics 1, 362 (2018) [2] K. Y. Guslienko et al., “Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays”, Phys. Rev. B 65 (2001)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信