一种用于Kinect深度视频的时空绘制方法

Dongdong Zhang, Ye Yao, D. Zang, Yanyu Chen
{"title":"一种用于Kinect深度视频的时空绘制方法","authors":"Dongdong Zhang, Ye Yao, D. Zang, Yanyu Chen","doi":"10.1109/ICSIPA.2013.6707979","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spatio-temporal inpainting method to recover depth images generated by Kinect. Based on the assumption that neighbouring pixels similar in color are likely to have similar depth values, for the first depth image and the sub-images including the motion bodies extracted from the following depth frames, we use color segmentation maps of the corresponding color video frames to guide the depth filling. Considering that some dark regions without valid depth value could lead to the fail of color-segmentation based depth filling, we design a dark region detection method and further refine hole-filling of the unfilled regions with the valid depth values of the same dark region. For the static areas of Kinect depth video, the recovered depth at the same position of previous frame is used to recover the lost depth in the current depth frame. Experimental results show that the proposed method significantly improves depth quality by successfully filling the holes so that we can use it for better 3D rendering.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A spatio-temporal inpainting method for Kinect depth video\",\"authors\":\"Dongdong Zhang, Ye Yao, D. Zang, Yanyu Chen\",\"doi\":\"10.1109/ICSIPA.2013.6707979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spatio-temporal inpainting method to recover depth images generated by Kinect. Based on the assumption that neighbouring pixels similar in color are likely to have similar depth values, for the first depth image and the sub-images including the motion bodies extracted from the following depth frames, we use color segmentation maps of the corresponding color video frames to guide the depth filling. Considering that some dark regions without valid depth value could lead to the fail of color-segmentation based depth filling, we design a dark region detection method and further refine hole-filling of the unfilled regions with the valid depth values of the same dark region. For the static areas of Kinect depth video, the recovered depth at the same position of previous frame is used to recover the lost depth in the current depth frame. Experimental results show that the proposed method significantly improves depth quality by successfully filling the holes so that we can use it for better 3D rendering.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6707979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6707979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种时空插值的方法来恢复Kinect产生的深度图像。基于颜色相似的相邻像素可能具有相似的深度值的假设,对于从以下深度帧中提取的第一深度图像和包含运动体的子图像,我们使用相应彩色视频帧的颜色分割映射来指导深度填充。考虑到一些没有有效深度值的暗区会导致基于颜色分割的深度填充失败,我们设计了一种暗区检测方法,并对未填充的区域使用相同暗区的有效深度值进一步细化补孔。对于Kinect深度视频的静态区域,使用前一帧相同位置的恢复深度来恢复当前深度帧中丢失的深度。实验结果表明,该方法通过成功填充孔,显著提高了深度质量,可以更好地用于三维渲染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatio-temporal inpainting method for Kinect depth video
In this paper, we propose a spatio-temporal inpainting method to recover depth images generated by Kinect. Based on the assumption that neighbouring pixels similar in color are likely to have similar depth values, for the first depth image and the sub-images including the motion bodies extracted from the following depth frames, we use color segmentation maps of the corresponding color video frames to guide the depth filling. Considering that some dark regions without valid depth value could lead to the fail of color-segmentation based depth filling, we design a dark region detection method and further refine hole-filling of the unfilled regions with the valid depth values of the same dark region. For the static areas of Kinect depth video, the recovered depth at the same position of previous frame is used to recover the lost depth in the current depth frame. Experimental results show that the proposed method significantly improves depth quality by successfully filling the holes so that we can use it for better 3D rendering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信