网络学习者和学习资源

Leyla Zhuhadar, Rong Yang
{"title":"网络学习者和学习资源","authors":"Leyla Zhuhadar, Rong Yang","doi":"10.1145/2330601.2330621","DOIUrl":null,"url":null,"abstract":"The discovery of community structure in real world networks has transformed the way we explore large systems. We propose a visual method to extract communities of cyberlearners in a large interconnected network consisting of cyberlearners and learning resources. The method used is heuristic and is based on visual clustering and a modularity measure. Each cluster of users is considered as a subset of the community of learners sharing a similar domain of interest. Accordingly, a recommender system is proposed to predict and recommend learning resources to cyberlearners within the same community. Experiments on real, dynamic data reveal the structure of community in the network. Our approach used the optimal discovered structure based on the modularity value to design a recommender system.","PeriodicalId":311750,"journal":{"name":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cyberlearners and learning resources\",\"authors\":\"Leyla Zhuhadar, Rong Yang\",\"doi\":\"10.1145/2330601.2330621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of community structure in real world networks has transformed the way we explore large systems. We propose a visual method to extract communities of cyberlearners in a large interconnected network consisting of cyberlearners and learning resources. The method used is heuristic and is based on visual clustering and a modularity measure. Each cluster of users is considered as a subset of the community of learners sharing a similar domain of interest. Accordingly, a recommender system is proposed to predict and recommend learning resources to cyberlearners within the same community. Experiments on real, dynamic data reveal the structure of community in the network. Our approach used the optimal discovered structure based on the modularity value to design a recommender system.\",\"PeriodicalId\":311750,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2330601.2330621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2330601.2330621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

现实世界网络中社区结构的发现改变了我们探索大型系统的方式。我们提出了一种可视化的方法来提取由网络学习者和学习资源组成的大型互联网络中的网络学习者社区。所使用的方法是启发式的,基于视觉聚类和模块化度量。每个用户集群被认为是学习者社区的一个子集,共享相似的兴趣领域。因此,我们提出了一个推荐系统来预测和推荐同一社区内的网络学习者的学习资源。对真实、动态数据的实验揭示了网络中社区的结构。该方法采用基于模块化值的最优发现结构来设计推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyberlearners and learning resources
The discovery of community structure in real world networks has transformed the way we explore large systems. We propose a visual method to extract communities of cyberlearners in a large interconnected network consisting of cyberlearners and learning resources. The method used is heuristic and is based on visual clustering and a modularity measure. Each cluster of users is considered as a subset of the community of learners sharing a similar domain of interest. Accordingly, a recommender system is proposed to predict and recommend learning resources to cyberlearners within the same community. Experiments on real, dynamic data reveal the structure of community in the network. Our approach used the optimal discovered structure based on the modularity value to design a recommender system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信