计算机代数在动力系统参数分析中的应用

N. Verdière, S. Orange
{"title":"计算机代数在动力系统参数分析中的应用","authors":"N. Verdière, S. Orange","doi":"10.1145/3476446.3535473","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to present some recent applications of computer algebra to answer structural and numerical questions in applied sciences. A first example concerns identifiability which is a pre-condition for safely running parameter estimation algorithms and obtaining reliable results. Identifiability addresses the question whether it is possible to uniquely estimate the model parameters for a given choice of measurement data and experimental input. As discussed in this paper, symbolic computation offers an efficient way to do this identifiability study and to extract more information on the parameter properties. A second example addressed hereafter is the diagnosability in nonlinear dynamical systems. The diagnosability is a prior study before considering diagnosis. The diagnosis of a system is defined as the detection and the isolation of faults (or localization and identification) acting on the system. The diagnosability study determines whether faults can be discriminated by the mathematical model from observations. These last years, the diagnosability and diagnosis have been enhanced by exploitting new analytical redundancy relations obtained from differential algebra algorithms and by the exploitation of their properties through computer algebra techniques.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"100 7-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Computer Algebra to Parameter Analysis of Dynamical Systems\",\"authors\":\"N. Verdière, S. Orange\",\"doi\":\"10.1145/3476446.3535473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to present some recent applications of computer algebra to answer structural and numerical questions in applied sciences. A first example concerns identifiability which is a pre-condition for safely running parameter estimation algorithms and obtaining reliable results. Identifiability addresses the question whether it is possible to uniquely estimate the model parameters for a given choice of measurement data and experimental input. As discussed in this paper, symbolic computation offers an efficient way to do this identifiability study and to extract more information on the parameter properties. A second example addressed hereafter is the diagnosability in nonlinear dynamical systems. The diagnosability is a prior study before considering diagnosis. The diagnosis of a system is defined as the detection and the isolation of faults (or localization and identification) acting on the system. The diagnosability study determines whether faults can be discriminated by the mathematical model from observations. These last years, the diagnosability and diagnosis have been enhanced by exploitting new analytical redundancy relations obtained from differential algebra algorithms and by the exploitation of their properties through computer algebra techniques.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"100 7-8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3535473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍计算机代数的一些最新应用,以回答应用科学中的结构和数值问题。第一个例子涉及可辨识性,这是安全运行参数估计算法并获得可靠结果的先决条件。可识别性解决的问题是,对于给定的测量数据和实验输入,是否有可能唯一地估计模型参数。正如本文所讨论的那样,符号计算提供了一种有效的方法来进行这种可识别性研究并提取有关参数属性的更多信息。下面讨论的第二个例子是非线性动力系统的可诊断性。在考虑诊断之前,可诊断性是一个预先的研究。系统的诊断被定义为检测和隔离作用于系统的故障(或定位和识别)。可诊断性研究决定了是否可以用数学模型从观测中区分故障。近年来,通过利用从微分代数算法中得到的新的解析冗余关系,以及通过计算机代数技术利用它们的性质,提高了可诊断性和诊断性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Computer Algebra to Parameter Analysis of Dynamical Systems
The purpose of this article is to present some recent applications of computer algebra to answer structural and numerical questions in applied sciences. A first example concerns identifiability which is a pre-condition for safely running parameter estimation algorithms and obtaining reliable results. Identifiability addresses the question whether it is possible to uniquely estimate the model parameters for a given choice of measurement data and experimental input. As discussed in this paper, symbolic computation offers an efficient way to do this identifiability study and to extract more information on the parameter properties. A second example addressed hereafter is the diagnosability in nonlinear dynamical systems. The diagnosability is a prior study before considering diagnosis. The diagnosis of a system is defined as the detection and the isolation of faults (or localization and identification) acting on the system. The diagnosability study determines whether faults can be discriminated by the mathematical model from observations. These last years, the diagnosability and diagnosis have been enhanced by exploitting new analytical redundancy relations obtained from differential algebra algorithms and by the exploitation of their properties through computer algebra techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信