基于自适应变异算子的多目标社区检测算法

Wenxue Wang, Qingxia Li, Wenhong Wei, Simin Yang
{"title":"基于自适应变异算子的多目标社区检测算法","authors":"Wenxue Wang, Qingxia Li, Wenhong Wei, Simin Yang","doi":"10.1109/ICIST55546.2022.9926771","DOIUrl":null,"url":null,"abstract":"Multi-objective optimization algorithms have been applied to community detection in recent years, notwithstanding, there are still problems such as poor stability and low computational efficiency. In order to improve the accuracy and calculation efficiency of community delineation, this paper proposed a multi-objective optimization algorithm (PDMOGA). PDMOGA fuses individual similarity to design a new mutation strategy and adds a de-duplication step to improve the quality of the Pareto frontier. Experimental results show that the algorithm improves stability and accuracy of community delineation compared with GA-NET, MOGA-NET and MOEA/D-NET.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Community Detection Algorithm based on the Adaptive Mutation Operator\",\"authors\":\"Wenxue Wang, Qingxia Li, Wenhong Wei, Simin Yang\",\"doi\":\"10.1109/ICIST55546.2022.9926771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimization algorithms have been applied to community detection in recent years, notwithstanding, there are still problems such as poor stability and low computational efficiency. In order to improve the accuracy and calculation efficiency of community delineation, this paper proposed a multi-objective optimization algorithm (PDMOGA). PDMOGA fuses individual similarity to design a new mutation strategy and adds a de-duplication step to improve the quality of the Pareto frontier. Experimental results show that the algorithm improves stability and accuracy of community delineation compared with GA-NET, MOGA-NET and MOEA/D-NET.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,多目标优化算法已被应用于社区检测,但仍存在稳定性差、计算效率低等问题。为了提高群落圈定的精度和计算效率,提出了一种多目标优化算法(PDMOGA)。PDMOGA融合个体相似性设计了一种新的突变策略,并增加了去重复步骤以提高Pareto边界的质量。实验结果表明,与GA-NET、MOGA-NET和MOEA/D-NET相比,该算法提高了群落圈定的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective Community Detection Algorithm based on the Adaptive Mutation Operator
Multi-objective optimization algorithms have been applied to community detection in recent years, notwithstanding, there are still problems such as poor stability and low computational efficiency. In order to improve the accuracy and calculation efficiency of community delineation, this paper proposed a multi-objective optimization algorithm (PDMOGA). PDMOGA fuses individual similarity to design a new mutation strategy and adds a de-duplication step to improve the quality of the Pareto frontier. Experimental results show that the algorithm improves stability and accuracy of community delineation compared with GA-NET, MOGA-NET and MOEA/D-NET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信