CoolTeD:一个基于web的文本数据集协作标记工具

Chong Wang, Jingwen Jiang, M. Daneva, M. V. Sinderen
{"title":"CoolTeD:一个基于web的文本数据集协作标记工具","authors":"Chong Wang, Jingwen Jiang, M. Daneva, M. V. Sinderen","doi":"10.1109/saner53432.2022.00078","DOIUrl":null,"url":null,"abstract":"High-quality labeled textual data are vital for automatic mining and analysis of massive textual data produced by software systems. Several tools have been designed to facilitate manual labeling of textual data on different levels of granularity. However, these tools neither aim to provide statistics and analysis of labeled textual data, nor support collaboration among the coders to reduce the time cost in manual labeling and enhance the quality of labeling results. In this paper, we developed a Web-based labeling tool named CoolTeD (available at http://williamsriver.cn) for collaborative labeling of the textual datasets. Specifically, CoolTeD can be used: (1) to label textual data from the perspective of requirements types based on ISO 25010, (2) to review the labeling results with different confidence levels and contradictory labels, (3) to automatically calculate Cohen's Kappa coefficient of multiple coders, and (4) to visualize the labeling results. The tool demo is available at https://youtu.be/xVkrB_Cs1J8","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CoolTeD: A Web-based Collaborative Labeling Tool for the Textual Dataset\",\"authors\":\"Chong Wang, Jingwen Jiang, M. Daneva, M. V. Sinderen\",\"doi\":\"10.1109/saner53432.2022.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality labeled textual data are vital for automatic mining and analysis of massive textual data produced by software systems. Several tools have been designed to facilitate manual labeling of textual data on different levels of granularity. However, these tools neither aim to provide statistics and analysis of labeled textual data, nor support collaboration among the coders to reduce the time cost in manual labeling and enhance the quality of labeling results. In this paper, we developed a Web-based labeling tool named CoolTeD (available at http://williamsriver.cn) for collaborative labeling of the textual datasets. Specifically, CoolTeD can be used: (1) to label textual data from the perspective of requirements types based on ISO 25010, (2) to review the labeling results with different confidence levels and contradictory labels, (3) to automatically calculate Cohen's Kappa coefficient of multiple coders, and (4) to visualize the labeling results. The tool demo is available at https://youtu.be/xVkrB_Cs1J8\",\"PeriodicalId\":437520,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/saner53432.2022.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高质量的标注文本数据对软件系统产生的海量文本数据的自动挖掘和分析至关重要。已经设计了一些工具,以方便在不同粒度级别上手动标记文本数据。然而,这些工具既不能提供标记文本数据的统计和分析,也不能支持编码员之间的协作,以减少人工标记的时间成本,提高标记结果的质量。在本文中,我们开发了一个基于web的标记工具,名为CoolTeD(可在http://williamsriver.cn上获得),用于文本数据集的协作标记。具体来说,CoolTeD可以使用:(1)基于ISO 25010从需求类型的角度对文本数据进行标注,(2)对不同置信度和矛盾标签的标注结果进行评审,(3)自动计算多个编码器的Cohen’s Kappa系数,(4)对标注结果进行可视化。该工具的演示可以在https://youtu.be/xVkrB_Cs1J8上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoolTeD: A Web-based Collaborative Labeling Tool for the Textual Dataset
High-quality labeled textual data are vital for automatic mining and analysis of massive textual data produced by software systems. Several tools have been designed to facilitate manual labeling of textual data on different levels of granularity. However, these tools neither aim to provide statistics and analysis of labeled textual data, nor support collaboration among the coders to reduce the time cost in manual labeling and enhance the quality of labeling results. In this paper, we developed a Web-based labeling tool named CoolTeD (available at http://williamsriver.cn) for collaborative labeling of the textual datasets. Specifically, CoolTeD can be used: (1) to label textual data from the perspective of requirements types based on ISO 25010, (2) to review the labeling results with different confidence levels and contradictory labels, (3) to automatically calculate Cohen's Kappa coefficient of multiple coders, and (4) to visualize the labeling results. The tool demo is available at https://youtu.be/xVkrB_Cs1J8
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信