磁盘代数上加权复合算子空间中的路径连通分量

K. Izuchi, Y. Izuchi, S. Ohno
{"title":"磁盘代数上加权复合算子空间中的路径连通分量","authors":"K. Izuchi, Y. Izuchi, S. Ohno","doi":"10.3318/PRIA.2011.112.07","DOIUrl":null,"url":null,"abstract":"Let H2 be the Hardy space and H°° the Banach space of bounded analytic functions on the open unit disk ID with the supremum norm || • Hoc. For / £ H°°, we denote by /* the radial limit of / defined a.e. on the boundary 3D of P. We write {|/*| = 1} = {el° £ 3D : \\f*(ete)\\ — 1}. Let m be the normalized Lebesgue measure on 3D. We denote by 5#* the set of analytic self-maps of D and Sh^.o — G Sh=c : Hvlloo = !}• For p £ Shthe composition operator C^ on H2 is defined by C^f = f o tp for / £ H2. Let C(H2) be the space of composition operators on H2 with the operator norm. The most interesting subject in the study of C(H2) is called the connected component problem, describing the connected component containing a given Cv. It was first studied by Berkson [2]. He showed that if p € 0, then is an isolated point in C(H2). Around 1990, MacCluer [13] and Shapiro and Sundberg [19] revisited the connected component problem on H2. Succeedingly, Bourdon [3], Gallardo-Gutierrez, Gonzalez, Nieminen and Saksman [6] and Moorhouse and Toews [16] followed. Still it remains unclear the connected component problem on H2 (see [4; 17; 18]). Similarly we have the space C(H°°) of composition operators on H°° with the","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PATH CONNECTED COMPONENTS IN THE SPACE OF WEIGHTED COMPOSITION OPERATORS ON THE DISK ALGEBRA\",\"authors\":\"K. Izuchi, Y. Izuchi, S. Ohno\",\"doi\":\"10.3318/PRIA.2011.112.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H2 be the Hardy space and H°° the Banach space of bounded analytic functions on the open unit disk ID with the supremum norm || • Hoc. For / £ H°°, we denote by /* the radial limit of / defined a.e. on the boundary 3D of P. We write {|/*| = 1} = {el° £ 3D : \\\\f*(ete)\\\\ — 1}. Let m be the normalized Lebesgue measure on 3D. We denote by 5#* the set of analytic self-maps of D and Sh^.o — G Sh=c : Hvlloo = !}• For p £ Shthe composition operator C^ on H2 is defined by C^f = f o tp for / £ H2. Let C(H2) be the space of composition operators on H2 with the operator norm. The most interesting subject in the study of C(H2) is called the connected component problem, describing the connected component containing a given Cv. It was first studied by Berkson [2]. He showed that if p € 0, then is an isolated point in C(H2). Around 1990, MacCluer [13] and Shapiro and Sundberg [19] revisited the connected component problem on H2. Succeedingly, Bourdon [3], Gallardo-Gutierrez, Gonzalez, Nieminen and Saksman [6] and Moorhouse and Toews [16] followed. Still it remains unclear the connected component problem on H2 (see [4; 17; 18]). Similarly we have the space C(H°°) of composition operators on H°° with the\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2011.112.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2011.112.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设H2为开放单元盘ID上具有上范数的有界解析函数的Hardy空间,H°°为Banach空间。对于/£H°°,我们用/*表示/定义的a.e.在p的边界3D上的径向极限。我们写{|/*| = 1}= {el°£3D: \f*(ete)\ - 1}。设m为三维上的归一化勒贝格测度。我们用5#*表示D和Sh^的解析自映射集。o - G Sh=c: Hvlloo = !}•对于p£Sh,复合算子c ^ on H2定义为c ^f = fo tp For /£H2。设C(H2)是H2上具有算子范数的复合算子的空间。研究C(H2)中最有趣的问题是连通分量问题,它描述了含有给定Cv的连通分量。最早由Berkson研究[2]。他证明了如果p€0,那么是C(H2)中的一个孤立点。1990年前后,MacCluer[13]和Shapiro and Sundberg[19]重新研究了H2上的连通分量问题。随后,Bourdon[3]、Gallardo-Gutierrez、Gonzalez、Nieminen and Saksman[6]、Moorhouse and Toews[16]也相继提出了类似的观点。H2上的连通分量问题仍然不清楚(参见[4];17;18])。类似地,我们有复合算子的空间C(H°)在H°上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PATH CONNECTED COMPONENTS IN THE SPACE OF WEIGHTED COMPOSITION OPERATORS ON THE DISK ALGEBRA
Let H2 be the Hardy space and H°° the Banach space of bounded analytic functions on the open unit disk ID with the supremum norm || • Hoc. For / £ H°°, we denote by /* the radial limit of / defined a.e. on the boundary 3D of P. We write {|/*| = 1} = {el° £ 3D : \f*(ete)\ — 1}. Let m be the normalized Lebesgue measure on 3D. We denote by 5#* the set of analytic self-maps of D and Sh^.o — G Sh=c : Hvlloo = !}• For p £ Shthe composition operator C^ on H2 is defined by C^f = f o tp for / £ H2. Let C(H2) be the space of composition operators on H2 with the operator norm. The most interesting subject in the study of C(H2) is called the connected component problem, describing the connected component containing a given Cv. It was first studied by Berkson [2]. He showed that if p € 0, then is an isolated point in C(H2). Around 1990, MacCluer [13] and Shapiro and Sundberg [19] revisited the connected component problem on H2. Succeedingly, Bourdon [3], Gallardo-Gutierrez, Gonzalez, Nieminen and Saksman [6] and Moorhouse and Toews [16] followed. Still it remains unclear the connected component problem on H2 (see [4; 17; 18]). Similarly we have the space C(H°°) of composition operators on H°° with the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信