人工神经网络结合扰动观测技术在光伏系统功率最大化中的性能

F. Dkhichi, B. Oukarfi, Y. El kouari, D. Ouoba, A. Fakkar, Z. Sabiri
{"title":"人工神经网络结合扰动观测技术在光伏系统功率最大化中的性能","authors":"F. Dkhichi, B. Oukarfi, Y. El kouari, D. Ouoba, A. Fakkar, Z. Sabiri","doi":"10.1109/IRSEC.2016.7984023","DOIUrl":null,"url":null,"abstract":"The optimization process of the production of photovoltaic power is crucial in order to ensure an optimal functioning of an output load. To do this, the use of a “maximum power point tracker” technique that allows maximization of the generated power by a photovoltaic generator is important. This maximization approach can be ensured by the use of a DC-DC converter “Boost”. In this paper we shed light on the combination of two techniques of the power maximization, completely different. The first one is classic “Perturb & Observe” while the second one is based on artificial intelligence “Artificial Neural Network”. The results obtained by the proposed method are compared with those obtained separately by each of the two methods, subject of the combination. This comparative study is aimed to show the different performances of the proposed method.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"14 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performances of Artificial Neural Network combined with Perturb & Observe technique in maximizing the photovoltaic system power\",\"authors\":\"F. Dkhichi, B. Oukarfi, Y. El kouari, D. Ouoba, A. Fakkar, Z. Sabiri\",\"doi\":\"10.1109/IRSEC.2016.7984023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization process of the production of photovoltaic power is crucial in order to ensure an optimal functioning of an output load. To do this, the use of a “maximum power point tracker” technique that allows maximization of the generated power by a photovoltaic generator is important. This maximization approach can be ensured by the use of a DC-DC converter “Boost”. In this paper we shed light on the combination of two techniques of the power maximization, completely different. The first one is classic “Perturb & Observe” while the second one is based on artificial intelligence “Artificial Neural Network”. The results obtained by the proposed method are compared with those obtained separately by each of the two methods, subject of the combination. This comparative study is aimed to show the different performances of the proposed method.\",\"PeriodicalId\":180557,\"journal\":{\"name\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"14 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2016.7984023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7984023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保证输出负荷的最佳运行,光伏发电的优化过程至关重要。要做到这一点,使用“最大功率点跟踪器”技术,使光伏发电机产生的功率最大化是很重要的。这种最大化的方法可以通过使用DC-DC转换器“Boost”来确保。本文阐明了两种完全不同的功率最大化技术的结合。第一个是经典的“Perturb & Observe”,第二个是基于人工智能的“artificial Neural Network”。将所提出的方法得到的结果与两种方法分别得到的结果进行比较。本比较研究旨在展示所提出方法的不同性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performances of Artificial Neural Network combined with Perturb & Observe technique in maximizing the photovoltaic system power
The optimization process of the production of photovoltaic power is crucial in order to ensure an optimal functioning of an output load. To do this, the use of a “maximum power point tracker” technique that allows maximization of the generated power by a photovoltaic generator is important. This maximization approach can be ensured by the use of a DC-DC converter “Boost”. In this paper we shed light on the combination of two techniques of the power maximization, completely different. The first one is classic “Perturb & Observe” while the second one is based on artificial intelligence “Artificial Neural Network”. The results obtained by the proposed method are compared with those obtained separately by each of the two methods, subject of the combination. This comparative study is aimed to show the different performances of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信