Nadine Abbas, Z. Dawy, Hazem M. Hajj, S. Sharafeddine
{"title":"具有流量分割的蜂窝/WiFi异构网络中的能量吞吐量权衡","authors":"Nadine Abbas, Z. Dawy, Hazem M. Hajj, S. Sharafeddine","doi":"10.1109/WCNC.2014.6952687","DOIUrl":null,"url":null,"abstract":"Heterogeneous networks are expected to play a major role towards meeting the exploding traffic demand over cellular systems. Particularly, existing WiFi hotspots will be dynamically utilized to offload the traffic of cellular mobile subscribers. This will be further facilitated by forthcoming advances in mobile device capabilities that will include the ability to operate multiple wireless interfaces simultaneously. To this end, we focus in this work on cellular/WiFi heterogeneous networks with traffic splitting where a mobile device can utilize existing cellular and WiFi links simultaneously to achieve various performance gains. We propose a multi-objective approach for traffic splitting that captures the tradeoffs between throughput maximization on one hand and battery energy minimization on the other hand. We evaluate the proposed approach using parameters determined via experimental measurements using Samsung Galaxy SIII mobile devices. Results are presented for various scenarios in order to quantify and analyze the throughput-energy tradeoffs of traffic splitting in cellular/WiFi heterogeneous networks.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Energy-throughput tradeoffs in cellular/WiFi heterogeneous networks with traffic splitting\",\"authors\":\"Nadine Abbas, Z. Dawy, Hazem M. Hajj, S. Sharafeddine\",\"doi\":\"10.1109/WCNC.2014.6952687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous networks are expected to play a major role towards meeting the exploding traffic demand over cellular systems. Particularly, existing WiFi hotspots will be dynamically utilized to offload the traffic of cellular mobile subscribers. This will be further facilitated by forthcoming advances in mobile device capabilities that will include the ability to operate multiple wireless interfaces simultaneously. To this end, we focus in this work on cellular/WiFi heterogeneous networks with traffic splitting where a mobile device can utilize existing cellular and WiFi links simultaneously to achieve various performance gains. We propose a multi-objective approach for traffic splitting that captures the tradeoffs between throughput maximization on one hand and battery energy minimization on the other hand. We evaluate the proposed approach using parameters determined via experimental measurements using Samsung Galaxy SIII mobile devices. Results are presented for various scenarios in order to quantify and analyze the throughput-energy tradeoffs of traffic splitting in cellular/WiFi heterogeneous networks.\",\"PeriodicalId\":220393,\"journal\":{\"name\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2014.6952687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-throughput tradeoffs in cellular/WiFi heterogeneous networks with traffic splitting
Heterogeneous networks are expected to play a major role towards meeting the exploding traffic demand over cellular systems. Particularly, existing WiFi hotspots will be dynamically utilized to offload the traffic of cellular mobile subscribers. This will be further facilitated by forthcoming advances in mobile device capabilities that will include the ability to operate multiple wireless interfaces simultaneously. To this end, we focus in this work on cellular/WiFi heterogeneous networks with traffic splitting where a mobile device can utilize existing cellular and WiFi links simultaneously to achieve various performance gains. We propose a multi-objective approach for traffic splitting that captures the tradeoffs between throughput maximization on one hand and battery energy minimization on the other hand. We evaluate the proposed approach using parameters determined via experimental measurements using Samsung Galaxy SIII mobile devices. Results are presented for various scenarios in order to quantify and analyze the throughput-energy tradeoffs of traffic splitting in cellular/WiFi heterogeneous networks.