随机时滞微分方程的分步倒推欧拉方法的时滞相关指数稳定性

Xiaomei Qu
{"title":"随机时滞微分方程的分步倒推欧拉方法的时滞相关指数稳定性","authors":"Xiaomei Qu","doi":"10.1109/ICICIP.2015.7388155","DOIUrl":null,"url":null,"abstract":"This paper investigates the delay-dependent stability of the split-step backward Euler method for nonlinear stochastic delay differential equations. Under a delay-dependent stability condition, in the case of fixed stepsize, it is proved that the split-step backward Euler method can reproduce the mean-square exponential stability of the exact solution under the restriction on the stepsize. Numerical experiments are also provided for demonstration.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On delay-dependent exponential stability of the split-step backward euler method for stochastic delay differential equations\",\"authors\":\"Xiaomei Qu\",\"doi\":\"10.1109/ICICIP.2015.7388155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the delay-dependent stability of the split-step backward Euler method for nonlinear stochastic delay differential equations. Under a delay-dependent stability condition, in the case of fixed stepsize, it is proved that the split-step backward Euler method can reproduce the mean-square exponential stability of the exact solution under the restriction on the stepsize. Numerical experiments are also provided for demonstration.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了非线性随机时滞微分方程的分步倒推欧拉方法的时滞稳定性。在时滞相关的稳定性条件下,在步长固定的情况下,证明了分步倒推欧拉法在步长限制下可以再现精确解的均方指数稳定性。并通过数值实验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On delay-dependent exponential stability of the split-step backward euler method for stochastic delay differential equations
This paper investigates the delay-dependent stability of the split-step backward Euler method for nonlinear stochastic delay differential equations. Under a delay-dependent stability condition, in the case of fixed stepsize, it is proved that the split-step backward Euler method can reproduce the mean-square exponential stability of the exact solution under the restriction on the stepsize. Numerical experiments are also provided for demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信