基于特征选择的入侵检测机器学习和深度学习框架

A. Lakshmanarao, A. Srisaila, T. S. Ravi Kiran
{"title":"基于特征选择的入侵检测机器学习和深度学习框架","authors":"A. Lakshmanarao, A. Srisaila, T. S. Ravi Kiran","doi":"10.1109/IC3IOT53935.2022.9767727","DOIUrl":null,"url":null,"abstract":"Increases in the size of the network and associated data have been a direct effect of technological breakthroughs in the technology and communication areas. As a result, new types of assaults have emerged, making it more difficult for network security systems to identify potential threats. An intrusion Detection is a critical cyber security method that keeps track of the progress of the network's software or hardware. In order to keep up with the ever-increasing rate and diversity of cyber threats, researchers have turned to machine learning approaches to build intrusion detection systems (IDS). Using machine learning algorithms, it is possible to identify with high precision the major differences between normal and abnormal data. In this paper, we proposed three feature selection techniques followed by machine learning and deep learning for IDS. We collected two different datasets and used the ANOVA F-value based method, impurity-based feature selection, and mutual information-based techniques for identifying the best features. Later, we applied three ML algorithms K-NN, Decision Trees, Logistic Regression, and Deep Learning Feed Forward Neural Networks on two datasets and achieved an accuracy of 88%, 99.9% with feed forward neural networks. The results shown that our model performed well compared to conventional methods.","PeriodicalId":430809,"journal":{"name":"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning and Deep Learning framework with Feature Selection for Intrusion Detection\",\"authors\":\"A. Lakshmanarao, A. Srisaila, T. S. Ravi Kiran\",\"doi\":\"10.1109/IC3IOT53935.2022.9767727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increases in the size of the network and associated data have been a direct effect of technological breakthroughs in the technology and communication areas. As a result, new types of assaults have emerged, making it more difficult for network security systems to identify potential threats. An intrusion Detection is a critical cyber security method that keeps track of the progress of the network's software or hardware. In order to keep up with the ever-increasing rate and diversity of cyber threats, researchers have turned to machine learning approaches to build intrusion detection systems (IDS). Using machine learning algorithms, it is possible to identify with high precision the major differences between normal and abnormal data. In this paper, we proposed three feature selection techniques followed by machine learning and deep learning for IDS. We collected two different datasets and used the ANOVA F-value based method, impurity-based feature selection, and mutual information-based techniques for identifying the best features. Later, we applied three ML algorithms K-NN, Decision Trees, Logistic Regression, and Deep Learning Feed Forward Neural Networks on two datasets and achieved an accuracy of 88%, 99.9% with feed forward neural networks. The results shown that our model performed well compared to conventional methods.\",\"PeriodicalId\":430809,\"journal\":{\"name\":\"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3IOT53935.2022.9767727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3IOT53935.2022.9767727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络和相关数据规模的增加是技术和通信领域技术突破的直接影响。因此,新的攻击类型出现了,使得网络安全系统更难识别潜在的威胁。入侵检测是一种关键的网络安全方法,可以跟踪网络软件或硬件的进展。为了跟上不断增长的速度和多样性的网络威胁,研究人员已经转向机器学习方法来构建入侵检测系统(IDS)。使用机器学习算法,可以高精度地识别正常和异常数据之间的主要差异。在本文中,我们提出了三种特征选择技术,然后是机器学习和深度学习。我们收集了两个不同的数据集,并使用基于方差分析f值的方法、基于杂质的特征选择和基于互信息的技术来识别最佳特征。随后,我们在两个数据集上应用了三种机器学习算法K-NN、决策树、逻辑回归和深度学习前馈神经网络,前馈神经网络的准确率分别达到88%和99.9%。结果表明,与传统方法相比,我们的模型具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Deep Learning framework with Feature Selection for Intrusion Detection
Increases in the size of the network and associated data have been a direct effect of technological breakthroughs in the technology and communication areas. As a result, new types of assaults have emerged, making it more difficult for network security systems to identify potential threats. An intrusion Detection is a critical cyber security method that keeps track of the progress of the network's software or hardware. In order to keep up with the ever-increasing rate and diversity of cyber threats, researchers have turned to machine learning approaches to build intrusion detection systems (IDS). Using machine learning algorithms, it is possible to identify with high precision the major differences between normal and abnormal data. In this paper, we proposed three feature selection techniques followed by machine learning and deep learning for IDS. We collected two different datasets and used the ANOVA F-value based method, impurity-based feature selection, and mutual information-based techniques for identifying the best features. Later, we applied three ML algorithms K-NN, Decision Trees, Logistic Regression, and Deep Learning Feed Forward Neural Networks on two datasets and achieved an accuracy of 88%, 99.9% with feed forward neural networks. The results shown that our model performed well compared to conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信