引入语言可理解模糊模型的快速遗传方法

L. Sánchez
{"title":"引入语言可理解模糊模型的快速遗传方法","authors":"L. Sánchez","doi":"10.1109/NAFIPS.2001.943781","DOIUrl":null,"url":null,"abstract":"Fuzzy rule bases can be regarded as mixtures of experts, and boosting techniques can be applied to learn them from data. In particular, provided that adequate reasoning methods are used, fuzzy models are extended additive models, thus backfitting can be applied to them. We propose to use an implementation of backfitting that uses a genetic algorithm for fitting submodels to residuals and we also show that it is both more accurate and faster than other fuzzy rule learning methods.","PeriodicalId":227374,"journal":{"name":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A fast genetic method for inducting linguistically understandable fuzzy models\",\"authors\":\"L. Sánchez\",\"doi\":\"10.1109/NAFIPS.2001.943781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy rule bases can be regarded as mixtures of experts, and boosting techniques can be applied to learn them from data. In particular, provided that adequate reasoning methods are used, fuzzy models are extended additive models, thus backfitting can be applied to them. We propose to use an implementation of backfitting that uses a genetic algorithm for fitting submodels to residuals and we also show that it is both more accurate and faster than other fuzzy rule learning methods.\",\"PeriodicalId\":227374,\"journal\":{\"name\":\"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2001.943781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2001.943781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

模糊规则库可以看作是专家的混合物,可以使用增强技术从数据中学习它们。特别是,如果使用适当的推理方法,模糊模型是扩展的加性模型,因此可以对其进行反拟合。我们建议使用一种反向拟合的实现,该实现使用遗传算法将子模型拟合到残差上,并且我们还表明它比其他模糊规则学习方法更准确和更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast genetic method for inducting linguistically understandable fuzzy models
Fuzzy rule bases can be regarded as mixtures of experts, and boosting techniques can be applied to learn them from data. In particular, provided that adequate reasoning methods are used, fuzzy models are extended additive models, thus backfitting can be applied to them. We propose to use an implementation of backfitting that uses a genetic algorithm for fitting submodels to residuals and we also show that it is both more accurate and faster than other fuzzy rule learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信