非线性最优控制:局部最优原理

Hayase, T. Yamazaki, E. Rijanto
{"title":"非线性最优控制:局部最优原理","authors":"Hayase, T. Yamazaki, E. Rijanto","doi":"10.1109/ICIT.2000.854125","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that a nonlinear regulator constructed by using a state-dependent Riccati equation (SDRE) is a local optimal solution of the original optimal control problem. In order to prove this fact, the conventional methods-Lagrange multiplier method, minimum principle and dynamic programming are used-and an idea of the principle of local optimality is introduced by modifying the principle of optimality of dynamic programming.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"3 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear optimal control: principle of local optimality\",\"authors\":\"Hayase, T. Yamazaki, E. Rijanto\",\"doi\":\"10.1109/ICIT.2000.854125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is shown that a nonlinear regulator constructed by using a state-dependent Riccati equation (SDRE) is a local optimal solution of the original optimal control problem. In order to prove this fact, the conventional methods-Lagrange multiplier method, minimum principle and dynamic programming are used-and an idea of the principle of local optimality is introduced by modifying the principle of optimality of dynamic programming.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"3 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了用状态相关Riccati方程(SDRE)构造的非线性调节器是原最优控制问题的局部最优解。为了证明这一事实,利用了拉格朗日乘子法、最小值原理和动态规划等传统方法,并通过对动态规划最优性原理的修改,引入了局部最优性原理的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear optimal control: principle of local optimality
In this paper, it is shown that a nonlinear regulator constructed by using a state-dependent Riccati equation (SDRE) is a local optimal solution of the original optimal control problem. In order to prove this fact, the conventional methods-Lagrange multiplier method, minimum principle and dynamic programming are used-and an idea of the principle of local optimality is introduced by modifying the principle of optimality of dynamic programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信