{"title":"农业应用中次优视图规划的深度强化学习","authors":"Xiangyu Zeng, Tobias Zaenker, Maren Bennewitz","doi":"10.1109/icra46639.2022.9811800","DOIUrl":null,"url":null,"abstract":"Automated agricultural applications, i.e., fruit picking require spatial information about crops and, especially, their fruits. In this paper, we present a novel deep reinforcement learning (DRL) approach to determine the next best view for automatic exploration of 3D environments with a robotic arm equipped with an RGB-D camera. We process the obtained images into an octree with labeled regions of interest (ROIs), i.e., fruits. We use this octree to generate 3D observation maps that serve as encoded input to the DRL network. We hereby do not only rely on known information about the environment, but explicitly also represent information about the unknown space to force exploration. Our network takes as input the encoded 3D observation map and the temporal sequence of camera view pose changes, and outputs the most promising camera movement direction. Our experimental results show an improved ROI targeted exploration performance resulting from our learned network in comparison to a state-of-the-art method.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep Reinforcement Learning for Next-Best-View Planning in Agricultural Applications\",\"authors\":\"Xiangyu Zeng, Tobias Zaenker, Maren Bennewitz\",\"doi\":\"10.1109/icra46639.2022.9811800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated agricultural applications, i.e., fruit picking require spatial information about crops and, especially, their fruits. In this paper, we present a novel deep reinforcement learning (DRL) approach to determine the next best view for automatic exploration of 3D environments with a robotic arm equipped with an RGB-D camera. We process the obtained images into an octree with labeled regions of interest (ROIs), i.e., fruits. We use this octree to generate 3D observation maps that serve as encoded input to the DRL network. We hereby do not only rely on known information about the environment, but explicitly also represent information about the unknown space to force exploration. Our network takes as input the encoded 3D observation map and the temporal sequence of camera view pose changes, and outputs the most promising camera movement direction. Our experimental results show an improved ROI targeted exploration performance resulting from our learned network in comparison to a state-of-the-art method.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning for Next-Best-View Planning in Agricultural Applications
Automated agricultural applications, i.e., fruit picking require spatial information about crops and, especially, their fruits. In this paper, we present a novel deep reinforcement learning (DRL) approach to determine the next best view for automatic exploration of 3D environments with a robotic arm equipped with an RGB-D camera. We process the obtained images into an octree with labeled regions of interest (ROIs), i.e., fruits. We use this octree to generate 3D observation maps that serve as encoded input to the DRL network. We hereby do not only rely on known information about the environment, but explicitly also represent information about the unknown space to force exploration. Our network takes as input the encoded 3D observation map and the temporal sequence of camera view pose changes, and outputs the most promising camera movement direction. Our experimental results show an improved ROI targeted exploration performance resulting from our learned network in comparison to a state-of-the-art method.