DroneVR:无人机操作员的网络虚拟现实模拟器

V. Nguyen, Kwanghee Jung, Tommy Dang
{"title":"DroneVR:无人机操作员的网络虚拟现实模拟器","authors":"V. Nguyen, Kwanghee Jung, Tommy Dang","doi":"10.1109/AIVR46125.2019.00060","DOIUrl":null,"url":null,"abstract":"In recent years, Unmanned Aerial Vehicle (UAV) has been used extensively in various applications from entertainment, virtual tourism to construction, mining, agriculture. Navigation, path planning, and image acquisition are the main tasks in administering these aerial devices in accordance with real-time object tracking for affordable aerial vehicles. Aircraft crash is one of the most critical issues due to the uncontrolled environment and signal loss that cause the aerial vehicle to hit the buildings on its returning mode. Furthermore, real-time image processing, such as object tracking, has not yet been exploited for a low-cost aerial vehicle. This paper proposes a prototype embedded in a Web-based application called DroneVR to mitigate the aforementioned issues. The virtual reality environment was reconstructed based on the real-world fly data (OpenStreetMap) in which path planning and navigation were carried out. Gaussian Mixture Model was used to extract foreground and detect a moving object, Kalman Filter method was then applied to predict and keep track of object's motion. Perceived ease of use was investigated with a small sample size users to improve the simulator.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"DroneVR: A Web Virtual Reality Simulator for Drone Operator\",\"authors\":\"V. Nguyen, Kwanghee Jung, Tommy Dang\",\"doi\":\"10.1109/AIVR46125.2019.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Unmanned Aerial Vehicle (UAV) has been used extensively in various applications from entertainment, virtual tourism to construction, mining, agriculture. Navigation, path planning, and image acquisition are the main tasks in administering these aerial devices in accordance with real-time object tracking for affordable aerial vehicles. Aircraft crash is one of the most critical issues due to the uncontrolled environment and signal loss that cause the aerial vehicle to hit the buildings on its returning mode. Furthermore, real-time image processing, such as object tracking, has not yet been exploited for a low-cost aerial vehicle. This paper proposes a prototype embedded in a Web-based application called DroneVR to mitigate the aforementioned issues. The virtual reality environment was reconstructed based on the real-world fly data (OpenStreetMap) in which path planning and navigation were carried out. Gaussian Mixture Model was used to extract foreground and detect a moving object, Kalman Filter method was then applied to predict and keep track of object's motion. Perceived ease of use was investigated with a small sample size users to improve the simulator.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

近年来,无人机已广泛应用于娱乐、虚拟旅游、建筑、采矿、农业等各个领域。导航、路径规划和图像采集是管理这些空中设备的主要任务,以符合可负担得起的飞行器的实时目标跟踪。由于环境失控和信号丢失导致飞行器在返回模式下撞击建筑物,飞机坠毁是最关键的问题之一。此外,实时图像处理,如目标跟踪,还没有被用于低成本的飞行器。本文提出了一个嵌入在基于web的应用程序中的原型,称为DroneVR,以缓解上述问题。基于真实飞行数据(OpenStreetMap)重建虚拟现实环境,并在其中进行路径规划和导航。利用高斯混合模型提取前景并检测运动目标,然后利用卡尔曼滤波方法预测和跟踪目标的运动。感知易用性调查与小样本量的用户,以改进模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DroneVR: A Web Virtual Reality Simulator for Drone Operator
In recent years, Unmanned Aerial Vehicle (UAV) has been used extensively in various applications from entertainment, virtual tourism to construction, mining, agriculture. Navigation, path planning, and image acquisition are the main tasks in administering these aerial devices in accordance with real-time object tracking for affordable aerial vehicles. Aircraft crash is one of the most critical issues due to the uncontrolled environment and signal loss that cause the aerial vehicle to hit the buildings on its returning mode. Furthermore, real-time image processing, such as object tracking, has not yet been exploited for a low-cost aerial vehicle. This paper proposes a prototype embedded in a Web-based application called DroneVR to mitigate the aforementioned issues. The virtual reality environment was reconstructed based on the real-world fly data (OpenStreetMap) in which path planning and navigation were carried out. Gaussian Mixture Model was used to extract foreground and detect a moving object, Kalman Filter method was then applied to predict and keep track of object's motion. Perceived ease of use was investigated with a small sample size users to improve the simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信