Yoshiki Masuyama, Xuankai Chang, Samuele Cornell, Shinji Watanabe, Nobutaka Ono
{"title":"语音识别的端到端集成,去噪,波束成形,和自监督学习表示","authors":"Yoshiki Masuyama, Xuankai Chang, Samuele Cornell, Shinji Watanabe, Nobutaka Ono","doi":"10.1109/SLT54892.2023.10023199","DOIUrl":null,"url":null,"abstract":"Self-supervised learning representation (SSLR) has demonstrated its significant effectiveness in automatic speech recognition (ASR), mainly with clean speech. Recent work pointed out the strength of integrating SSLR with single-channel speech enhancement for ASR in noisy environments. This paper further advances this integration by dealing with multi-channel input. We propose a novel end-to-end architecture by integrating dereverberation, beamforming, SSLR, and ASR within a single neural network. Our system achieves the best performance reported in the literature on the CHiME-4 6-channel track with a word error rate (WER) of 1.77%. While the WavLM-based strong SSLR demonstrates promising results by itself, the end-to-end integration with the weighted power minimization distortionless response beamformer, which simultaneously performs dereverberation and denoising, improves WER significantly. Its effectiveness is also validated on the REVERB dataset.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"End-to-End Integration of Speech Recognition, Dereverberation, Beamforming, and Self-Supervised Learning Representation\",\"authors\":\"Yoshiki Masuyama, Xuankai Chang, Samuele Cornell, Shinji Watanabe, Nobutaka Ono\",\"doi\":\"10.1109/SLT54892.2023.10023199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supervised learning representation (SSLR) has demonstrated its significant effectiveness in automatic speech recognition (ASR), mainly with clean speech. Recent work pointed out the strength of integrating SSLR with single-channel speech enhancement for ASR in noisy environments. This paper further advances this integration by dealing with multi-channel input. We propose a novel end-to-end architecture by integrating dereverberation, beamforming, SSLR, and ASR within a single neural network. Our system achieves the best performance reported in the literature on the CHiME-4 6-channel track with a word error rate (WER) of 1.77%. While the WavLM-based strong SSLR demonstrates promising results by itself, the end-to-end integration with the weighted power minimization distortionless response beamformer, which simultaneously performs dereverberation and denoising, improves WER significantly. Its effectiveness is also validated on the REVERB dataset.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10023199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10023199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-End Integration of Speech Recognition, Dereverberation, Beamforming, and Self-Supervised Learning Representation
Self-supervised learning representation (SSLR) has demonstrated its significant effectiveness in automatic speech recognition (ASR), mainly with clean speech. Recent work pointed out the strength of integrating SSLR with single-channel speech enhancement for ASR in noisy environments. This paper further advances this integration by dealing with multi-channel input. We propose a novel end-to-end architecture by integrating dereverberation, beamforming, SSLR, and ASR within a single neural network. Our system achieves the best performance reported in the literature on the CHiME-4 6-channel track with a word error rate (WER) of 1.77%. While the WavLM-based strong SSLR demonstrates promising results by itself, the end-to-end integration with the weighted power minimization distortionless response beamformer, which simultaneously performs dereverberation and denoising, improves WER significantly. Its effectiveness is also validated on the REVERB dataset.