基于时空融合模型的PM2.5浓度预测

Sifan Su, Cui Zhu, Wenjun Zhu, L. Kaunda
{"title":"基于时空融合模型的PM2.5浓度预测","authors":"Sifan Su, Cui Zhu, Wenjun Zhu, L. Kaunda","doi":"10.1109/iccia.2018.00014","DOIUrl":null,"url":null,"abstract":"In this paper, a temporal-spatial fusion model is proposed for PM2.5 concentration prediction. The model uses historical PM2.5 concentration and meteorological data as input of the model to make hourly predictions of PM2.5 concentration. This model consists of three parts: 1) Long short-term memory neural network predictor based on time dimension, 2) Artificial neural network predictor based on spatial dimension, 3) Model tree predictor based on temporal-spatial fusion. This method combines the forecast results of two dimensions in space and time dynamically, as the spatial and temporal correlation of data is considered. Experimental results show this model performs better than predicting from a single dimension, confirming the effectiveness of the model.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Prediction of PM2.5 Concentration Based on Temporal-Spatial Fusion Model\",\"authors\":\"Sifan Su, Cui Zhu, Wenjun Zhu, L. Kaunda\",\"doi\":\"10.1109/iccia.2018.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a temporal-spatial fusion model is proposed for PM2.5 concentration prediction. The model uses historical PM2.5 concentration and meteorological data as input of the model to make hourly predictions of PM2.5 concentration. This model consists of three parts: 1) Long short-term memory neural network predictor based on time dimension, 2) Artificial neural network predictor based on spatial dimension, 3) Model tree predictor based on temporal-spatial fusion. This method combines the forecast results of two dimensions in space and time dynamically, as the spatial and temporal correlation of data is considered. Experimental results show this model performs better than predicting from a single dimension, confirming the effectiveness of the model.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccia.2018.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccia.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于PM2.5浓度预测的时空融合模型。该模型使用历史PM2.5浓度和气象数据作为模型的输入,对每小时的PM2.5浓度进行预测。该模型由三个部分组成:1)基于时间维度的长短期记忆神经网络预测器,2)基于空间维度的人工神经网络预测器,3)基于时空融合的模型树预测器。该方法考虑了数据的时空相关性,将空间和时间两个维度的预测结果动态地结合起来。实验结果表明,该模型的预测效果优于单维度预测,验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prediction of PM2.5 Concentration Based on Temporal-Spatial Fusion Model
In this paper, a temporal-spatial fusion model is proposed for PM2.5 concentration prediction. The model uses historical PM2.5 concentration and meteorological data as input of the model to make hourly predictions of PM2.5 concentration. This model consists of three parts: 1) Long short-term memory neural network predictor based on time dimension, 2) Artificial neural network predictor based on spatial dimension, 3) Model tree predictor based on temporal-spatial fusion. This method combines the forecast results of two dimensions in space and time dynamically, as the spatial and temporal correlation of data is considered. Experimental results show this model performs better than predicting from a single dimension, confirming the effectiveness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信