基于AWS Lambda的高能物理分布式并行分析引擎

Jacek Kusnierz, M. Malawski, V. Padulano, E. T. Saavedra, P. Alonso-Jordá
{"title":"基于AWS Lambda的高能物理分布式并行分析引擎","authors":"Jacek Kusnierz, M. Malawski, V. Padulano, E. T. Saavedra, P. Alonso-Jordá","doi":"10.1145/3452413.3464788","DOIUrl":null,"url":null,"abstract":"The High-Energy Physics experiments at CERN produce a high volume of data. It is not possible to analyze big chunks of it within a reasonable time by any single machine. The ROOT framework was recently extended with the distributed computing capabilities for massively parallelized RDataFrame applications. This approach, using the MapReduce pattern underneath, made the heavy computations much more approachable even for the newcomers. This paper explores the possibility of running such analyses on serverless services in public cloud using a purely stateless environment. So far, the distributed approaches used by RDataFrame relied on stateful, fully managed computing frameworks like Apache Spark. Here we show that our newly developed tool is able to use perfectly stateless cloud functions, demonstrating the excellent speedup in parallel stage of processing in our benchmarks.","PeriodicalId":339058,"journal":{"name":"Proceedings of the 1st Workshop on High Performance Serverless Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed Parallel Analysis Engine for High Energy Physics Using AWS Lambda\",\"authors\":\"Jacek Kusnierz, M. Malawski, V. Padulano, E. T. Saavedra, P. Alonso-Jordá\",\"doi\":\"10.1145/3452413.3464788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The High-Energy Physics experiments at CERN produce a high volume of data. It is not possible to analyze big chunks of it within a reasonable time by any single machine. The ROOT framework was recently extended with the distributed computing capabilities for massively parallelized RDataFrame applications. This approach, using the MapReduce pattern underneath, made the heavy computations much more approachable even for the newcomers. This paper explores the possibility of running such analyses on serverless services in public cloud using a purely stateless environment. So far, the distributed approaches used by RDataFrame relied on stateful, fully managed computing frameworks like Apache Spark. Here we show that our newly developed tool is able to use perfectly stateless cloud functions, demonstrating the excellent speedup in parallel stage of processing in our benchmarks.\",\"PeriodicalId\":339058,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452413.3464788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on High Performance Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452413.3464788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

欧洲核子研究中心的高能物理实验产生了大量的数据。任何一台机器都不可能在合理的时间内分析大量数据。ROOT框架最近被扩展为大规模并行RDataFrame应用程序的分布式计算能力。这种方法使用了底层的MapReduce模式,使得繁重的计算即使对于新手来说也更容易处理。本文探讨了使用纯无状态环境在公共云中无服务器服务上运行此类分析的可能性。到目前为止,RDataFrame使用的分布式方法依赖于有状态的、完全托管的计算框架,比如Apache Spark。在这里,我们展示了我们新开发的工具能够完美地使用无状态云功能,在我们的基准测试中展示了并行处理阶段的出色加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Parallel Analysis Engine for High Energy Physics Using AWS Lambda
The High-Energy Physics experiments at CERN produce a high volume of data. It is not possible to analyze big chunks of it within a reasonable time by any single machine. The ROOT framework was recently extended with the distributed computing capabilities for massively parallelized RDataFrame applications. This approach, using the MapReduce pattern underneath, made the heavy computations much more approachable even for the newcomers. This paper explores the possibility of running such analyses on serverless services in public cloud using a purely stateless environment. So far, the distributed approaches used by RDataFrame relied on stateful, fully managed computing frameworks like Apache Spark. Here we show that our newly developed tool is able to use perfectly stateless cloud functions, demonstrating the excellent speedup in parallel stage of processing in our benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信