E. Potash, J. Brew, Alexander Loewi, S. Majumdar, Andrew G. Reece, Joe Walsh, Eric Rozier, Emile Jorgenson, Raed Mansour, R. Ghani
{"title":"公共卫生预测模型:预防儿童铅中毒","authors":"E. Potash, J. Brew, Alexander Loewi, S. Majumdar, Andrew G. Reece, Joe Walsh, Eric Rozier, Emile Jorgenson, Raed Mansour, R. Ghani","doi":"10.1145/2783258.2788629","DOIUrl":null,"url":null,"abstract":"Lead poisoning is a major public health problem that affects hundreds of thousands of children in the United States every year. A common approach to identifying lead hazards is to test all children for elevated blood lead levels and then investigate and remediate the homes of children with elevated tests. This can prevent exposure to lead of future residents, but only after a child has been poisoned. This paper describes joint work with the Chicago Department of Public Health (CDPH) in which we build a model that predicts the risk of a child to being poisoned so that an intervention can take place before that happens. Using two decades of blood lead level tests, home lead inspections, property value assessments, and census data, our model allows inspectors to prioritize houses on an intractably long list of potential hazards and identify children who are at the highest risk. This work has been described by CDPH as pioneering in the use of machine learning and predictive analytics in public health and has the potential to have a significant impact on both health and economic outcomes for communities across the US.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Predictive Modeling for Public Health: Preventing Childhood Lead Poisoning\",\"authors\":\"E. Potash, J. Brew, Alexander Loewi, S. Majumdar, Andrew G. Reece, Joe Walsh, Eric Rozier, Emile Jorgenson, Raed Mansour, R. Ghani\",\"doi\":\"10.1145/2783258.2788629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lead poisoning is a major public health problem that affects hundreds of thousands of children in the United States every year. A common approach to identifying lead hazards is to test all children for elevated blood lead levels and then investigate and remediate the homes of children with elevated tests. This can prevent exposure to lead of future residents, but only after a child has been poisoned. This paper describes joint work with the Chicago Department of Public Health (CDPH) in which we build a model that predicts the risk of a child to being poisoned so that an intervention can take place before that happens. Using two decades of blood lead level tests, home lead inspections, property value assessments, and census data, our model allows inspectors to prioritize houses on an intractably long list of potential hazards and identify children who are at the highest risk. This work has been described by CDPH as pioneering in the use of machine learning and predictive analytics in public health and has the potential to have a significant impact on both health and economic outcomes for communities across the US.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2788629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2788629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive Modeling for Public Health: Preventing Childhood Lead Poisoning
Lead poisoning is a major public health problem that affects hundreds of thousands of children in the United States every year. A common approach to identifying lead hazards is to test all children for elevated blood lead levels and then investigate and remediate the homes of children with elevated tests. This can prevent exposure to lead of future residents, but only after a child has been poisoned. This paper describes joint work with the Chicago Department of Public Health (CDPH) in which we build a model that predicts the risk of a child to being poisoned so that an intervention can take place before that happens. Using two decades of blood lead level tests, home lead inspections, property value assessments, and census data, our model allows inspectors to prioritize houses on an intractably long list of potential hazards and identify children who are at the highest risk. This work has been described by CDPH as pioneering in the use of machine learning and predictive analytics in public health and has the potential to have a significant impact on both health and economic outcomes for communities across the US.