基于特征选择的监督机器学习技术的网络入侵检测

K. A. Taher, Billal Mohammed Yasin Jisan, M. Rahman
{"title":"基于特征选择的监督机器学习技术的网络入侵检测","authors":"K. A. Taher, Billal Mohammed Yasin Jisan, M. Rahman","doi":"10.1109/ICREST.2019.8644161","DOIUrl":null,"url":null,"abstract":"A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.","PeriodicalId":108842,"journal":{"name":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection\",\"authors\":\"K. A. Taher, Billal Mohammed Yasin Jisan, M. Rahman\",\"doi\":\"10.1109/ICREST.2019.8644161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.\",\"PeriodicalId\":108842,\"journal\":{\"name\":\"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICREST.2019.8644161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICREST.2019.8644161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

摘要

开发了一种新的监督式机器学习系统,用于对网络流量进行恶意或良性分类。为了寻找考虑检测成功率的最佳模型,将监督学习算法与特征选择方法相结合。通过本研究,发现基于人工神经网络(ANN)的机器学习与包装特征选择在网络流量分类方面优于支持向量机(SVM)技术。为了评估性能,使用NSL-KDD数据集使用支持向量机和人工神经网络监督机器学习技术对网络流量进行分类。对比研究表明,该模型在入侵检测成功率方面优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection
A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信