宏观叠加态的相性质

E. Hach, C. Gerry
{"title":"宏观叠加态的相性质","authors":"E. Hach, C. Gerry","doi":"10.1088/0954-8998/5/6/002","DOIUrl":null,"url":null,"abstract":"Phase properties of states consisting of superpositions of the states mod a) and mod -a), coherent states of a single mode quantized electromagnetic field, are studied. These states are also known as macroscopic superposition states and 'Schrodinger cat' states. After first reviewing the squeezing and antibunching properties of these states, from the density operator and the phase states we derive a probability distribution for the phase. We also compare with this distributions obtained from the associated Q-function and the Wigner function.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Phase properties of macroscopic superposition states\",\"authors\":\"E. Hach, C. Gerry\",\"doi\":\"10.1088/0954-8998/5/6/002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase properties of states consisting of superpositions of the states mod a) and mod -a), coherent states of a single mode quantized electromagnetic field, are studied. These states are also known as macroscopic superposition states and 'Schrodinger cat' states. After first reviewing the squeezing and antibunching properties of these states, from the density operator and the phase states we derive a probability distribution for the phase. We also compare with this distributions obtained from the associated Q-function and the Wigner function.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/5/6/002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/5/6/002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了单模量子化电磁场的相干态模a和模a叠加态的相位特性。这些状态也被称为宏观叠加态和“薛定谔猫”态。在回顾了这些态的压缩和反聚束特性之后,我们从密度算子和相态推导出了相的概率分布。我们还比较了从相关的q函数和Wigner函数得到的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase properties of macroscopic superposition states
Phase properties of states consisting of superpositions of the states mod a) and mod -a), coherent states of a single mode quantized electromagnetic field, are studied. These states are also known as macroscopic superposition states and 'Schrodinger cat' states. After first reviewing the squeezing and antibunching properties of these states, from the density operator and the phase states we derive a probability distribution for the phase. We also compare with this distributions obtained from the associated Q-function and the Wigner function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信