{"title":"100mhz混合数字系统数据执行单元的设计","authors":"F. Lai","doi":"10.1109/VLSIC.1990.111125","DOIUrl":null,"url":null,"abstract":"A hybrid number system data execution unit which supports the 32-b IEEE 754 floating-point and a 32-b logarithmic number system is described. By using the proposed conversion algorithms, a very-high-performance data execution unit is realized for all basic arithmetic operations, such as multiplication, division, squaring, and square root. These operations, in a pipelined structure, can be executed in 10 ns in a 0.8-μm CMOS technology. Critical paths, such as the required 12-b by 12-b Booth multiplier, are implemented with the redundant binary bit representation to enhance the performance, and the multiple-port ROMs are carefully laid out and use half-VDD precharge to reduce the access time. The architecture, circuit design, and design methodology are described in detail. Simulated circuit performance of this data execution unit is also discussed","PeriodicalId":239990,"journal":{"name":"Digest of Technical Papers., 1990 Symposium on VLSI Circuits","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a 100 MHz hybrid number system data execution unit\",\"authors\":\"F. Lai\",\"doi\":\"10.1109/VLSIC.1990.111125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid number system data execution unit which supports the 32-b IEEE 754 floating-point and a 32-b logarithmic number system is described. By using the proposed conversion algorithms, a very-high-performance data execution unit is realized for all basic arithmetic operations, such as multiplication, division, squaring, and square root. These operations, in a pipelined structure, can be executed in 10 ns in a 0.8-μm CMOS technology. Critical paths, such as the required 12-b by 12-b Booth multiplier, are implemented with the redundant binary bit representation to enhance the performance, and the multiple-port ROMs are carefully laid out and use half-VDD precharge to reduce the access time. The architecture, circuit design, and design methodology are described in detail. Simulated circuit performance of this data execution unit is also discussed\",\"PeriodicalId\":239990,\"journal\":{\"name\":\"Digest of Technical Papers., 1990 Symposium on VLSI Circuits\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers., 1990 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.1990.111125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers., 1990 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1990.111125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
介绍了一种支持32b IEEE 754浮点数和32b对数数的混合数制数据执行单元。通过使用所提出的转换算法,实现了所有基本算术运算(如乘法、除法、平方和平方根)的高性能数据执行单元。这些操作采用流水线结构,在0.8 μ m CMOS技术中可在10ns内完成。关键路径,如所需的12b × 12b Booth乘子,通过冗余二进制位表示来实现以提高性能,并且精心布局多端口rom并使用半vdd预充电来减少访问时间。详细介绍了系统的结构、电路设计和设计方法。文中还讨论了该数据执行单元的仿真电路性能
Design of a 100 MHz hybrid number system data execution unit
A hybrid number system data execution unit which supports the 32-b IEEE 754 floating-point and a 32-b logarithmic number system is described. By using the proposed conversion algorithms, a very-high-performance data execution unit is realized for all basic arithmetic operations, such as multiplication, division, squaring, and square root. These operations, in a pipelined structure, can be executed in 10 ns in a 0.8-μm CMOS technology. Critical paths, such as the required 12-b by 12-b Booth multiplier, are implemented with the redundant binary bit representation to enhance the performance, and the multiple-port ROMs are carefully laid out and use half-VDD precharge to reduce the access time. The architecture, circuit design, and design methodology are described in detail. Simulated circuit performance of this data execution unit is also discussed