{"title":"人检测的置信直方图","authors":"L. Middleton, James R. Snowdon","doi":"10.1109/ICIP.2010.5649809","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of person detection in harsh industrial environments. Different image regions often have different requirements for the person to be detected. Additionally, as the environment can change on a frame to frame basis even previously detected people can fail to be found. In our work we adapt a previously trained classifier to improve its performance in the industrial environment. The classifier output is initially used an image descriptor. Structure from the descriptor history is learned using semi-supervised learning to boost overall performance. In comparison with two state of the art person detectors we see gains of 10%. Our approach is generally applicable to pretrained classifiers which can then be specialised for a specific scene.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Histogram of confidences for person detection\",\"authors\":\"L. Middleton, James R. Snowdon\",\"doi\":\"10.1109/ICIP.2010.5649809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the problem of person detection in harsh industrial environments. Different image regions often have different requirements for the person to be detected. Additionally, as the environment can change on a frame to frame basis even previously detected people can fail to be found. In our work we adapt a previously trained classifier to improve its performance in the industrial environment. The classifier output is initially used an image descriptor. Structure from the descriptor history is learned using semi-supervised learning to boost overall performance. In comparison with two state of the art person detectors we see gains of 10%. Our approach is generally applicable to pretrained classifiers which can then be specialised for a specific scene.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5649809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5649809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper focuses on the problem of person detection in harsh industrial environments. Different image regions often have different requirements for the person to be detected. Additionally, as the environment can change on a frame to frame basis even previously detected people can fail to be found. In our work we adapt a previously trained classifier to improve its performance in the industrial environment. The classifier output is initially used an image descriptor. Structure from the descriptor history is learned using semi-supervised learning to boost overall performance. In comparison with two state of the art person detectors we see gains of 10%. Our approach is generally applicable to pretrained classifiers which can then be specialised for a specific scene.