基于非线性判别分析和RVM的小土地覆盖斑块有效分类

F. Mianji, Ye Zhang, A. Babakhani
{"title":"基于非线性判别分析和RVM的小土地覆盖斑块有效分类","authors":"F. Mianji, Ye Zhang, A. Babakhani","doi":"10.1109/ICCSP.2011.5739329","DOIUrl":null,"url":null,"abstract":"Hughes phenomenon is a serious problem in supervised classification of hyperspectral images in particular for small land-cover patches. A solution for this problem through integrating the capabilities of a nonlinear discriminating analysis with relevance vector machine (RVM) is proposed in this paper. It first transforms the hyperdimensional data to a new space with a better class separability. Then, a multiclass RVM classifier processes the transformed data for precise labeling of the classes. The results show that the proposed approach outperforms both RVM as well as support vector machine (SVM), when they are applied to the original hyperdimensional data space. Indeed, it is an advantage for key information detection in the classification context.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear discriminant analysis and RVM for efficient classification of small land-cover patches\",\"authors\":\"F. Mianji, Ye Zhang, A. Babakhani\",\"doi\":\"10.1109/ICCSP.2011.5739329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hughes phenomenon is a serious problem in supervised classification of hyperspectral images in particular for small land-cover patches. A solution for this problem through integrating the capabilities of a nonlinear discriminating analysis with relevance vector machine (RVM) is proposed in this paper. It first transforms the hyperdimensional data to a new space with a better class separability. Then, a multiclass RVM classifier processes the transformed data for precise labeling of the classes. The results show that the proposed approach outperforms both RVM as well as support vector machine (SVM), when they are applied to the original hyperdimensional data space. Indeed, it is an advantage for key information detection in the classification context.\",\"PeriodicalId\":408736,\"journal\":{\"name\":\"2011 International Conference on Communications and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2011.5739329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

休斯现象是高光谱图像监督分类中的一个严重问题,特别是对小块土地覆盖区。本文提出了一种将非线性判别分析与相关向量机(RVM)相结合的方法。它首先将超维数据转换为具有更好的类可分性的新空间。然后,一个多类RVM分类器处理转换后的数据,以便对类进行精确标记。结果表明,该方法应用于原始超维数据空间时,优于RVM和支持向量机(SVM)。实际上,它对于分类上下文中的关键信息检测是一个优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear discriminant analysis and RVM for efficient classification of small land-cover patches
Hughes phenomenon is a serious problem in supervised classification of hyperspectral images in particular for small land-cover patches. A solution for this problem through integrating the capabilities of a nonlinear discriminating analysis with relevance vector machine (RVM) is proposed in this paper. It first transforms the hyperdimensional data to a new space with a better class separability. Then, a multiclass RVM classifier processes the transformed data for precise labeling of the classes. The results show that the proposed approach outperforms both RVM as well as support vector machine (SVM), when they are applied to the original hyperdimensional data space. Indeed, it is an advantage for key information detection in the classification context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信