{"title":"预测导向性能-能量权衡与连续运行时适应","authors":"Taejoon Song, Daniel Lo, G. Suh","doi":"10.1145/2934583.2934598","DOIUrl":null,"url":null,"abstract":"Recent work has demonstrated that prediction-guided DVFS control can significantly improve the energy efficiency of interactive applications with little to no impact on user experience when running in isolation. In this work, we propose to add an on-line learning capability to the execution-time predictor, which enables the predictor to automatically adapt to changes in the environment such as interference from other applications and be easily applied across diverse platforms. This paper introduces several techniques to address the overhead of performing on-line learning, including incremental training based on QR decomposition and explicit change detection for fast adaptation. In addition to the DVFS control, we show that the proposed prediction model can be used to intelligently select a core in a heterogeneous system. Experimental results on the ARM big.LITTLE platform show that our DVFS controller and core scheduler can effectively remove deadline misses even under significant interference from competing processes while consuming far lower energy compared to traditional schemes.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction-Guided Performance-Energy Trade-off with Continuous Run-Time Adaptation\",\"authors\":\"Taejoon Song, Daniel Lo, G. Suh\",\"doi\":\"10.1145/2934583.2934598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has demonstrated that prediction-guided DVFS control can significantly improve the energy efficiency of interactive applications with little to no impact on user experience when running in isolation. In this work, we propose to add an on-line learning capability to the execution-time predictor, which enables the predictor to automatically adapt to changes in the environment such as interference from other applications and be easily applied across diverse platforms. This paper introduces several techniques to address the overhead of performing on-line learning, including incremental training based on QR decomposition and explicit change detection for fast adaptation. In addition to the DVFS control, we show that the proposed prediction model can be used to intelligently select a core in a heterogeneous system. Experimental results on the ARM big.LITTLE platform show that our DVFS controller and core scheduler can effectively remove deadline misses even under significant interference from competing processes while consuming far lower energy compared to traditional schemes.\",\"PeriodicalId\":142716,\"journal\":{\"name\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2934583.2934598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction-Guided Performance-Energy Trade-off with Continuous Run-Time Adaptation
Recent work has demonstrated that prediction-guided DVFS control can significantly improve the energy efficiency of interactive applications with little to no impact on user experience when running in isolation. In this work, we propose to add an on-line learning capability to the execution-time predictor, which enables the predictor to automatically adapt to changes in the environment such as interference from other applications and be easily applied across diverse platforms. This paper introduces several techniques to address the overhead of performing on-line learning, including incremental training based on QR decomposition and explicit change detection for fast adaptation. In addition to the DVFS control, we show that the proposed prediction model can be used to intelligently select a core in a heterogeneous system. Experimental results on the ARM big.LITTLE platform show that our DVFS controller and core scheduler can effectively remove deadline misses even under significant interference from competing processes while consuming far lower energy compared to traditional schemes.