基于fpga的深度神经网络高级加速方法

Lei Liu, Jianlu Luo, Xiaoyan Deng, Sikun Li
{"title":"基于fpga的深度神经网络高级加速方法","authors":"Lei Liu, Jianlu Luo, Xiaoyan Deng, Sikun Li","doi":"10.1109/3PGCIC.2015.103","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) is becoming more and more applied in data center applications such as speech recognition, image search, etc. However, the training in DNN is very time-consuming because of its deep structure. This paper presents FPGA-based acceleration of deep neural networks using a high level method and proposes a parallel optimizing strategy using the Kintex-7 FPGA board's features. Experimental results show that it can increase the utilization of FPGA computation units with low mini-batch size and reduce the transfer cost effectively. The optimized algorithm achieves up to 17.65x higher performance than CPU.","PeriodicalId":395401,"journal":{"name":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA-based Acceleration of Deep Neural Networks Using High Level Method\",\"authors\":\"Lei Liu, Jianlu Luo, Xiaoyan Deng, Sikun Li\",\"doi\":\"10.1109/3PGCIC.2015.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network (DNN) is becoming more and more applied in data center applications such as speech recognition, image search, etc. However, the training in DNN is very time-consuming because of its deep structure. This paper presents FPGA-based acceleration of deep neural networks using a high level method and proposes a parallel optimizing strategy using the Kintex-7 FPGA board's features. Experimental results show that it can increase the utilization of FPGA computation units with low mini-batch size and reduce the transfer cost effectively. The optimized algorithm achieves up to 17.65x higher performance than CPU.\",\"PeriodicalId\":395401,\"journal\":{\"name\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2015.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2015.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度神经网络(DNN)在语音识别、图像搜索等数据中心应用中得到越来越多的应用。然而,由于深度神经网络的深层结构,其训练非常耗时。本文提出了一种基于FPGA的深度神经网络的高级加速方法,并利用Kintex-7 FPGA板的特点提出了一种并行优化策略。实验结果表明,该方法可以有效地提高FPGA小批量计算单元的利用率,降低传输成本。优化后的算法性能比CPU高17.65倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based Acceleration of Deep Neural Networks Using High Level Method
Deep neural network (DNN) is becoming more and more applied in data center applications such as speech recognition, image search, etc. However, the training in DNN is very time-consuming because of its deep structure. This paper presents FPGA-based acceleration of deep neural networks using a high level method and proposes a parallel optimizing strategy using the Kintex-7 FPGA board's features. Experimental results show that it can increase the utilization of FPGA computation units with low mini-batch size and reduce the transfer cost effectively. The optimized algorithm achieves up to 17.65x higher performance than CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信