处理曲面网格的线性平移不变算子

M. Alexa
{"title":"处理曲面网格的线性平移不变算子","authors":"M. Alexa","doi":"10.1109/TDPVT.2004.1335151","DOIUrl":null,"url":null,"abstract":"Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear shift-invariant operators for processing surface meshes\",\"authors\":\"M. Alexa\",\"doi\":\"10.1109/TDPVT.2004.1335151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.\",\"PeriodicalId\":191172,\"journal\":{\"name\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDPVT.2004.1335151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

曲面网格的平移不变算子使用网格的几何实现来定义。那么,平移不变性本质上意味着各向同性w.r.t.距离度量。详细分析了具有小支持的定义LSI操作符的特殊情况,显示了与均值坐标的连接。拓扑拉普拉斯算子是网格拓扑实现的LSI算子。更一般地说,假设不同的几何实现或度量允许解释各种网格处理技术作为LSI操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear shift-invariant operators for processing surface meshes
Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信