{"title":"处理曲面网格的线性平移不变算子","authors":"M. Alexa","doi":"10.1109/TDPVT.2004.1335151","DOIUrl":null,"url":null,"abstract":"Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear shift-invariant operators for processing surface meshes\",\"authors\":\"M. Alexa\",\"doi\":\"10.1109/TDPVT.2004.1335151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.\",\"PeriodicalId\":191172,\"journal\":{\"name\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDPVT.2004.1335151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear shift-invariant operators for processing surface meshes
Shift-invariant operators for surface meshes are defined using geometric realizations of the mesh. Then, shift-invariance essentially means isotropy w.r.t. a distance metric. The particular case of the so-defined LSI operators with small support is analyzed in detail, showing a connection to mean value coordinates. The topological Laplacian operator turns out to be the LSI operator of the topological realization of the mesh. More generally, assuming different geometric realizations or metrics allows interpreting various mesh processing techniques as LSI operators.