{"title":"基于非负矩阵分解的面部表情识别联合空间几何和最大边界分类器约束","authors":"Thanh Trong Phan, D. V. Thang","doi":"10.30991/ijmlnce.2019v03i03.001","DOIUrl":null,"url":null,"abstract":"Based on the constrained non-negative matrix factor algorithm, the article presents a new approach to facial recognition recognition. Our proposed method incorporated two tasks in an automatic expression analysis system: facial feature extraction and classification into expressions. To obtain local and geometric structure information in the data as much as possible, we amalgamate max-margin relegation into the constrained NMF optimization, resulting in a multiplicative updating algorithm is additionally proposed for solving optimization quandary. Experimental results on JAFFE dataset demonstrate that the effectiveness of the proposed method with improved performances over the conventional dimension reduction methods.","PeriodicalId":338210,"journal":{"name":"International Journal of Machine Learning and Networked Collaborative Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Spatial Geometric and Max-margin Classifier Constraints for Facial Expression Recognition Using Nonnegative Matrix Factorization\",\"authors\":\"Thanh Trong Phan, D. V. Thang\",\"doi\":\"10.30991/ijmlnce.2019v03i03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the constrained non-negative matrix factor algorithm, the article presents a new approach to facial recognition recognition. Our proposed method incorporated two tasks in an automatic expression analysis system: facial feature extraction and classification into expressions. To obtain local and geometric structure information in the data as much as possible, we amalgamate max-margin relegation into the constrained NMF optimization, resulting in a multiplicative updating algorithm is additionally proposed for solving optimization quandary. Experimental results on JAFFE dataset demonstrate that the effectiveness of the proposed method with improved performances over the conventional dimension reduction methods.\",\"PeriodicalId\":338210,\"journal\":{\"name\":\"International Journal of Machine Learning and Networked Collaborative Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Networked Collaborative Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30991/ijmlnce.2019v03i03.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Networked Collaborative Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30991/ijmlnce.2019v03i03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Spatial Geometric and Max-margin Classifier Constraints for Facial Expression Recognition Using Nonnegative Matrix Factorization
Based on the constrained non-negative matrix factor algorithm, the article presents a new approach to facial recognition recognition. Our proposed method incorporated two tasks in an automatic expression analysis system: facial feature extraction and classification into expressions. To obtain local and geometric structure information in the data as much as possible, we amalgamate max-margin relegation into the constrained NMF optimization, resulting in a multiplicative updating algorithm is additionally proposed for solving optimization quandary. Experimental results on JAFFE dataset demonstrate that the effectiveness of the proposed method with improved performances over the conventional dimension reduction methods.