Ulysses:一个健壮、低直径、低延迟的点对点网络

Abhishek Kumar, S. Merugu, Jun Xu, E. Zegura, Xingxing Yu
{"title":"Ulysses:一个健壮、低直径、低延迟的点对点网络","authors":"Abhishek Kumar, S. Merugu, Jun Xu, E. Zegura, Xingxing Yu","doi":"10.1109/ICNP.2003.1249776","DOIUrl":null,"url":null,"abstract":"A number of distributed hash table (DHT)-based protocols have been proposed to address the issue of scalability in peer-to-peer networks. In this paper, we present Ulysses, a peer-to-peer network based on the butterfly topology that achieves the theoretical lower bound of (log n)/(log log n)on network diameter when the average routing table size at nodes is no more than log n. Compared to existing DHT-based schemes with similar routing table size, Ulysses reduces the network diameter by a factor of log log n. which is 2-4 for typical configurations. This translates into the same amount of reduction on query latency and average traffic per link/node. In addition, Ulysses maintains the same level of robustness in terms of routing in the face of faults and recovering from graceful/ungraceful joins and departures, as provided by existing DHT-based schemes. The performance of the protocol has been evaluated using both analysis and simulation.","PeriodicalId":179873,"journal":{"name":"11th IEEE International Conference on Network Protocols, 2003. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Ulysses: a robust, low-diameter, low-latency peer-to-peer network\",\"authors\":\"Abhishek Kumar, S. Merugu, Jun Xu, E. Zegura, Xingxing Yu\",\"doi\":\"10.1109/ICNP.2003.1249776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of distributed hash table (DHT)-based protocols have been proposed to address the issue of scalability in peer-to-peer networks. In this paper, we present Ulysses, a peer-to-peer network based on the butterfly topology that achieves the theoretical lower bound of (log n)/(log log n)on network diameter when the average routing table size at nodes is no more than log n. Compared to existing DHT-based schemes with similar routing table size, Ulysses reduces the network diameter by a factor of log log n. which is 2-4 for typical configurations. This translates into the same amount of reduction on query latency and average traffic per link/node. In addition, Ulysses maintains the same level of robustness in terms of routing in the face of faults and recovering from graceful/ungraceful joins and departures, as provided by existing DHT-based schemes. The performance of the protocol has been evaluated using both analysis and simulation.\",\"PeriodicalId\":179873,\"journal\":{\"name\":\"11th IEEE International Conference on Network Protocols, 2003. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th IEEE International Conference on Network Protocols, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2003.1249776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE International Conference on Network Protocols, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2003.1249776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

为了解决点对点网络中的可伸缩性问题,已经提出了许多基于分布式哈希表(DHT)的协议。在本文中,我们提出了基于蝴蝶拓扑的点对点网络Ulysses,当节点的平均路由表大小不大于log n时,它实现了网络直径的理论下界(log n)/(log log n)。与现有基于dhs的类似路由表大小的方案相比,Ulysses将网络直径减小了log log n的因子,典型配置为2-4。这意味着查询延迟和每个链路/节点的平均流量减少了相同的数量。此外,Ulysses在面对故障的路由和从优雅/不优雅的连接和离开中恢复方面保持了与现有基于dhs的方案相同的鲁棒性水平。通过分析和仿真对协议的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ulysses: a robust, low-diameter, low-latency peer-to-peer network
A number of distributed hash table (DHT)-based protocols have been proposed to address the issue of scalability in peer-to-peer networks. In this paper, we present Ulysses, a peer-to-peer network based on the butterfly topology that achieves the theoretical lower bound of (log n)/(log log n)on network diameter when the average routing table size at nodes is no more than log n. Compared to existing DHT-based schemes with similar routing table size, Ulysses reduces the network diameter by a factor of log log n. which is 2-4 for typical configurations. This translates into the same amount of reduction on query latency and average traffic per link/node. In addition, Ulysses maintains the same level of robustness in terms of routing in the face of faults and recovering from graceful/ungraceful joins and departures, as provided by existing DHT-based schemes. The performance of the protocol has been evaluated using both analysis and simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信