多光谱MRI半监督前列腺癌分割

Y. Artan, M. Haider, Deanne L. Langei, I. Yetik
{"title":"多光谱MRI半监督前列腺癌分割","authors":"Y. Artan, M. Haider, Deanne L. Langei, I. Yetik","doi":"10.1109/ISBI.2010.5490091","DOIUrl":null,"url":null,"abstract":"Prostate cancer is one of the leading causes of cancer related death for men in the United States. Recently, multispectral magnetic resonance imaging (MRI) has emerged as a promising noninvasive method for the localization of prostate cancer alternative to transrectal ultrasound (TRUS). This paper develops a semi-supervised method for prostate cancer localization using multispectral MRI. Patient-specific contrast can be utilized in this method for improved performance. We also propose to use an anisotropic filtering scheme to suppress the noise in the images. Using multispectral MR images, we demonstrate the effectiveness of this algorithm by testing it on real data sets and compare it to the results of a fully-automated method as well as to the earlier results. Both visual and quantitative comparisons are provided, illlustrating the success of the proposed method.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Semi-supervised prostate cancer segmentation with multispectral MRI\",\"authors\":\"Y. Artan, M. Haider, Deanne L. Langei, I. Yetik\",\"doi\":\"10.1109/ISBI.2010.5490091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate cancer is one of the leading causes of cancer related death for men in the United States. Recently, multispectral magnetic resonance imaging (MRI) has emerged as a promising noninvasive method for the localization of prostate cancer alternative to transrectal ultrasound (TRUS). This paper develops a semi-supervised method for prostate cancer localization using multispectral MRI. Patient-specific contrast can be utilized in this method for improved performance. We also propose to use an anisotropic filtering scheme to suppress the noise in the images. Using multispectral MR images, we demonstrate the effectiveness of this algorithm by testing it on real data sets and compare it to the results of a fully-automated method as well as to the earlier results. Both visual and quantitative comparisons are provided, illlustrating the success of the proposed method.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

前列腺癌是美国男性癌症相关死亡的主要原因之一。近年来,多谱磁共振成像(MRI)已成为一种替代经直肠超声(TRUS)的无创前列腺癌定位方法。本文提出了一种基于多光谱MRI的前列腺癌半监督定位方法。在这种方法中,可以利用患者特异性对比来提高性能。我们还提出了一种各向异性滤波方案来抑制图像中的噪声。使用多光谱MR图像,我们通过在真实数据集上测试该算法,并将其与全自动方法的结果以及早期结果进行比较,证明了该算法的有效性。给出了视觉和定量的比较,说明了所提出方法的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised prostate cancer segmentation with multispectral MRI
Prostate cancer is one of the leading causes of cancer related death for men in the United States. Recently, multispectral magnetic resonance imaging (MRI) has emerged as a promising noninvasive method for the localization of prostate cancer alternative to transrectal ultrasound (TRUS). This paper develops a semi-supervised method for prostate cancer localization using multispectral MRI. Patient-specific contrast can be utilized in this method for improved performance. We also propose to use an anisotropic filtering scheme to suppress the noise in the images. Using multispectral MR images, we demonstrate the effectiveness of this algorithm by testing it on real data sets and compare it to the results of a fully-automated method as well as to the earlier results. Both visual and quantitative comparisons are provided, illlustrating the success of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信