A. Motroni, Fabio Bernardini, A. Buffi, P. Nepa, B. Tellini
{"title":"用于零售中标签定位的自定位RFID机器人","authors":"A. Motroni, Fabio Bernardini, A. Buffi, P. Nepa, B. Tellini","doi":"10.1109/RFID52461.2021.9444384","DOIUrl":null,"url":null,"abstract":"This paper presents a RFID-based mobile robot able of self-locating within an indoor scenario and to estimate the position of target UHF-RFID tags. To locate itself, the robot exploits a sensor-fusion method which combines data from an infrastructure of passive reference RFID tags arranged in known locations and data from rotary wheel encoders. Besides, during its motion it is able of measuring the target tag locations through a synthetic-array approach. The knowledge of the reader antenna trajectory is here achieved from the RFID-based sensor-fusion method which exhibits a localization error lower than 0.27 m for 20-m long paths in a real office environment. Then, the estimated trajectory is exploited for target tag localization with high accuracy by using the synthetic-array approach.","PeriodicalId":358808,"journal":{"name":"2021 IEEE International Conference on RFID (RFID)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Locating RFID Robot for Tag Localization in Retails\",\"authors\":\"A. Motroni, Fabio Bernardini, A. Buffi, P. Nepa, B. Tellini\",\"doi\":\"10.1109/RFID52461.2021.9444384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a RFID-based mobile robot able of self-locating within an indoor scenario and to estimate the position of target UHF-RFID tags. To locate itself, the robot exploits a sensor-fusion method which combines data from an infrastructure of passive reference RFID tags arranged in known locations and data from rotary wheel encoders. Besides, during its motion it is able of measuring the target tag locations through a synthetic-array approach. The knowledge of the reader antenna trajectory is here achieved from the RFID-based sensor-fusion method which exhibits a localization error lower than 0.27 m for 20-m long paths in a real office environment. Then, the estimated trajectory is exploited for target tag localization with high accuracy by using the synthetic-array approach.\",\"PeriodicalId\":358808,\"journal\":{\"name\":\"2021 IEEE International Conference on RFID (RFID)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on RFID (RFID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID52461.2021.9444384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID52461.2021.9444384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Locating RFID Robot for Tag Localization in Retails
This paper presents a RFID-based mobile robot able of self-locating within an indoor scenario and to estimate the position of target UHF-RFID tags. To locate itself, the robot exploits a sensor-fusion method which combines data from an infrastructure of passive reference RFID tags arranged in known locations and data from rotary wheel encoders. Besides, during its motion it is able of measuring the target tag locations through a synthetic-array approach. The knowledge of the reader antenna trajectory is here achieved from the RFID-based sensor-fusion method which exhibits a localization error lower than 0.27 m for 20-m long paths in a real office environment. Then, the estimated trajectory is exploited for target tag localization with high accuracy by using the synthetic-array approach.