分数阶跳跃-扩散过程驱动的随机波动率模型中的期权定价

Omid Jenabi, Nazar Dahmardeh Ghale No
{"title":"分数阶跳跃-扩散过程驱动的随机波动率模型中的期权定价","authors":"Omid Jenabi, Nazar Dahmardeh Ghale No","doi":"10.2047/ijltfesvol8iss1-1374-1385","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fractional stochastic volatility jump-diffusion model which extends the Bates(1996) model. Where we model the volatility as a fractional process. Extensive empirical studies show that the distributions of the logarithmic returns of financial asset usually exhibit properties of self-similarity and long-range dependence and since the fractional Brownian motion has these two important properties, it has the ability to capture the behavior of underlying asset price. Further incorporating jumps into the stochastic volatility framework gives further freedom to financial mathematicians to fit both the short and long end of the implied volatility surface. We propose a stochastic model which contains both fractional and jump process. Then we price options using Monte Carlo simulations along with a variance reduction technique(antithetic variates). We use market data from the S&P 500 index and we compare our results with the Heston and Bates model using error measures. The results show our model greatly outperforms previous models in terms of estimation accuracy.","PeriodicalId":320274,"journal":{"name":"The International Journal of Latest Trends in Finance and Economic Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option Pricing in Stochastic Volatility Models Driven by Fractional Jump-Diffusion Processes\",\"authors\":\"Omid Jenabi, Nazar Dahmardeh Ghale No\",\"doi\":\"10.2047/ijltfesvol8iss1-1374-1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fractional stochastic volatility jump-diffusion model which extends the Bates(1996) model. Where we model the volatility as a fractional process. Extensive empirical studies show that the distributions of the logarithmic returns of financial asset usually exhibit properties of self-similarity and long-range dependence and since the fractional Brownian motion has these two important properties, it has the ability to capture the behavior of underlying asset price. Further incorporating jumps into the stochastic volatility framework gives further freedom to financial mathematicians to fit both the short and long end of the implied volatility surface. We propose a stochastic model which contains both fractional and jump process. Then we price options using Monte Carlo simulations along with a variance reduction technique(antithetic variates). We use market data from the S&P 500 index and we compare our results with the Heston and Bates model using error measures. The results show our model greatly outperforms previous models in terms of estimation accuracy.\",\"PeriodicalId\":320274,\"journal\":{\"name\":\"The International Journal of Latest Trends in Finance and Economic Sciences\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Latest Trends in Finance and Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2047/ijltfesvol8iss1-1374-1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Latest Trends in Finance and Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2047/ijltfesvol8iss1-1374-1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个分数阶随机波动跳-扩散模型,它扩展了Bates(1996)模型。我们将波动性建模为一个分数过程。大量的实证研究表明,金融资产的对数收益分布通常表现出自相似和长期依赖的特性,由于分数布朗运动具有这两个重要的特性,它具有捕捉标的资产价格行为的能力。将跳跃进一步纳入随机波动率框架,使金融数学家能够更自由地拟合隐含波动率表面的短端和长端。我们提出了一个包含分数过程和跳跃过程的随机模型。然后,我们使用蒙特卡罗模拟和方差减少技术(对偶变量)为期权定价。我们使用标准普尔500指数的市场数据,并使用误差度量将我们的结果与赫斯顿和贝茨模型进行比较。结果表明,我们的模型在估计精度上大大优于以往的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Pricing in Stochastic Volatility Models Driven by Fractional Jump-Diffusion Processes
In this paper, we propose a fractional stochastic volatility jump-diffusion model which extends the Bates(1996) model. Where we model the volatility as a fractional process. Extensive empirical studies show that the distributions of the logarithmic returns of financial asset usually exhibit properties of self-similarity and long-range dependence and since the fractional Brownian motion has these two important properties, it has the ability to capture the behavior of underlying asset price. Further incorporating jumps into the stochastic volatility framework gives further freedom to financial mathematicians to fit both the short and long end of the implied volatility surface. We propose a stochastic model which contains both fractional and jump process. Then we price options using Monte Carlo simulations along with a variance reduction technique(antithetic variates). We use market data from the S&P 500 index and we compare our results with the Heston and Bates model using error measures. The results show our model greatly outperforms previous models in terms of estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信