用一种新的综合方案计算分析肌肉萎缩症亚型

Chen Wang, S. S. Ha, Y. Wang, J. Xuan, E. Hoffman
{"title":"用一种新的综合方案计算分析肌肉萎缩症亚型","authors":"Chen Wang, S. S. Ha, Y. Wang, J. Xuan, E. Hoffman","doi":"10.1109/ICMLA.2010.49","DOIUrl":null,"url":null,"abstract":"To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computational Analysis of Muscular Dystrophy Sub-types Using a Novel Integrative Scheme\",\"authors\":\"Chen Wang, S. S. Ha, Y. Wang, J. Xuan, E. Hoffman\",\"doi\":\"10.1109/ICMLA.2010.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了构建生物学上可解释的特征并促进肌肉萎缩症(MD)亚型分类,我们提出了一种利用PPI网络、功能基因集信息和mRNA谱分析的新型整合方案。该方案的工作流程包括三个主要步骤:首先,将蛋白质-蛋白质相互作用网络结构和基因共表达关系结合到新的距离度量中,采用亲和传播聚类方法构建基因子网络;其次,我们进一步整合功能基因集知识来补充物理相互作用信息。最后,基于构建的子网络和基因集特征,应用多类支持向量机(MSVM)对MD亚型进行分类,并突出对亚型预测有贡献的生物标志物。实验结果表明,与传统方法相比,该方法可以构造出与MD更相关的子网络。此外,我们的综合策略大大提高了预测的准确性,特别是对于那些难以分类的子类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Analysis of Muscular Dystrophy Sub-types Using a Novel Integrative Scheme
To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信