{"title":"用一种新的综合方案计算分析肌肉萎缩症亚型","authors":"Chen Wang, S. S. Ha, Y. Wang, J. Xuan, E. Hoffman","doi":"10.1109/ICMLA.2010.49","DOIUrl":null,"url":null,"abstract":"To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computational Analysis of Muscular Dystrophy Sub-types Using a Novel Integrative Scheme\",\"authors\":\"Chen Wang, S. S. Ha, Y. Wang, J. Xuan, E. Hoffman\",\"doi\":\"10.1109/ICMLA.2010.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Analysis of Muscular Dystrophy Sub-types Using a Novel Integrative Scheme
To construct biologically interpretable features and facilitate Muscular Dystrophy (MD) sub-types classification, we propose a novel integrative scheme utilizing PPI network, functional gene sets information, and mRNA profiling. The workflow of the proposed scheme includes three major steps: First, by combining protein–protein interaction network structure and gene co-expression relationship into new distance metric, we apply affinity propagation clustering to build gene sub-networks. Secondly, we further incorporate functional gene sets knowledge to complement the physical interaction information. Finally, based on constructed sub-network and gene set features, we apply multi-class support vector machine (MSVM) for MD sub-type classification, and highlight the biomarkers contributing to the sub-type prediction. The experimental results show that our scheme could construct sub-networks that are more relevant to MD than those constructed by conventional approach. Furthermore, our integrative strategy substantially improved the prediction accuracy, especially for those hard-to-classify sub-types.