周期延迟轨道与多重隐函数定理

Peter Albers, Irene Seifert
{"title":"周期延迟轨道与多重隐函数定理","authors":"Peter Albers, Irene Seifert","doi":"10.4171/CMH/533","DOIUrl":null,"url":null,"abstract":"We consider differential delay equations of the form $\\partial_tx(t) = X_{t}(x(t - \\tau))$ in $\\mathbb{R}^n$, where $(X_t)_{t\\in S^1}$ is a time-dependent family of smooth vector fields on $\\mathbb{R}^n$ and $\\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$ of this equation for $\\tau=0$, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by delay. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder [HWZ09, HWZ17] to overcome this problem in a natural setup.","PeriodicalId":407889,"journal":{"name":"arXiv: Dynamical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Periodic delay orbits and the polyfold implicit function theorem\",\"authors\":\"Peter Albers, Irene Seifert\",\"doi\":\"10.4171/CMH/533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider differential delay equations of the form $\\\\partial_tx(t) = X_{t}(x(t - \\\\tau))$ in $\\\\mathbb{R}^n$, where $(X_t)_{t\\\\in S^1}$ is a time-dependent family of smooth vector fields on $\\\\mathbb{R}^n$ and $\\\\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$ of this equation for $\\\\tau=0$, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by delay. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder [HWZ09, HWZ17] to overcome this problem in a natural setup.\",\"PeriodicalId\":407889,\"journal\":{\"name\":\"arXiv: Dynamical Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/CMH/533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑$\mathbb{R}^n$中$\partial_tx(t) = X_{t}(x(t - \tau))$形式的微分延迟方程,其中$(X_t)_{t\in S^1}$是$\mathbb{R}^n$上与时间相关的光滑向量场族,$\tau$是一个延迟参数。如果这个方程对于$\tau=0$存在一个(适当的非退化的)周期解$x_0$,即没有延迟,那么我们就有充分的理由期望存在所有足够小的延迟的周期解族,它们被延迟平滑地参数化。然而,用经典隐函数定理来证明这一点似乎很困难,因为上面的方程在延迟参数上是不光滑的。在本文中,我们展示了如何使用Hofer-Wysocki-Zehnder [HWZ09, HWZ17]的m -多重隐函数定理来克服自然设置中的这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic delay orbits and the polyfold implicit function theorem
We consider differential delay equations of the form $\partial_tx(t) = X_{t}(x(t - \tau))$ in $\mathbb{R}^n$, where $(X_t)_{t\in S^1}$ is a time-dependent family of smooth vector fields on $\mathbb{R}^n$ and $\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$ of this equation for $\tau=0$, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by delay. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder [HWZ09, HWZ17] to overcome this problem in a natural setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信