加速用于多光谱医学图像可视化的小型自组织地图

G. Myklebust, J. G. Solheim, E. Steen
{"title":"加速用于多光谱医学图像可视化的小型自组织地图","authors":"G. Myklebust, J. G. Solheim, E. Steen","doi":"10.1109/CBMS.1995.465440","DOIUrl":null,"url":null,"abstract":"We present the results of parallel implementations of Kohonen's self-organizing maps using data partitioning. Two algorithms are implemented, a pure data partitioning algorithm and a combined data- and network-partitioning algorithm. The performance of the algorithms is far better for small neural networks than the performance of our previous SOM implementations. The SOM model can be used for visualization of MR images, an application with a small number of neurons. Using one of the proposed algorithms, the performance of this application is increased by over 200%. The convergence rate of the proposed algorithm and the original algorithm is shown to be similar when the frequency of the weight update is properly selected.<<ETX>>","PeriodicalId":254366,"journal":{"name":"Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Speeding up small sized self-organizing maps for use in visualization of multispectral medical images\",\"authors\":\"G. Myklebust, J. G. Solheim, E. Steen\",\"doi\":\"10.1109/CBMS.1995.465440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of parallel implementations of Kohonen's self-organizing maps using data partitioning. Two algorithms are implemented, a pure data partitioning algorithm and a combined data- and network-partitioning algorithm. The performance of the algorithms is far better for small neural networks than the performance of our previous SOM implementations. The SOM model can be used for visualization of MR images, an application with a small number of neurons. Using one of the proposed algorithms, the performance of this application is increased by over 200%. The convergence rate of the proposed algorithm and the original algorithm is shown to be similar when the frequency of the weight update is properly selected.<<ETX>>\",\"PeriodicalId\":254366,\"journal\":{\"name\":\"Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1995.465440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1995.465440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们给出了利用数据分区并行实现Kohonen自组织映射的结果。实现了两种算法,一种是纯数据分区算法,另一种是数据和网络混合分区算法。对于小型神经网络,算法的性能比我们以前的SOM实现的性能要好得多。SOM模型可以用于MR图像的可视化,这是一个具有少量神经元的应用。使用其中一种提出的算法,该应用程序的性能提高了200%以上。当权值更新的频率选择适当时,所提算法的收敛速度与原算法相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding up small sized self-organizing maps for use in visualization of multispectral medical images
We present the results of parallel implementations of Kohonen's self-organizing maps using data partitioning. Two algorithms are implemented, a pure data partitioning algorithm and a combined data- and network-partitioning algorithm. The performance of the algorithms is far better for small neural networks than the performance of our previous SOM implementations. The SOM model can be used for visualization of MR images, an application with a small number of neurons. Using one of the proposed algorithms, the performance of this application is increased by over 200%. The convergence rate of the proposed algorithm and the original algorithm is shown to be similar when the frequency of the weight update is properly selected.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信