从科学出版商网站中提取期刊信息的框架

Umamageswari Kumaresan, K. Ramanujam
{"title":"从科学出版商网站中提取期刊信息的框架","authors":"Umamageswari Kumaresan, K. Ramanujam","doi":"10.1109/ISCO.2016.7726937","DOIUrl":null,"url":null,"abstract":"World Wide Web is a huge repository of information and the information is presented in the disparate formats which make automated processing a cumbersome task. Search engines are used to query the WWW. Students and scholars find it difficult to determine the appropriate journals for the research article publication since performing a keyword search using search engines like Google, Yahoo etc. presents them with a list of publication site where the user need to click through a series of link to reach the journal web site and go through the details of the journals like Impact Factor, SNIP etc. manually. Suppose if a publication web site is linked to hundreds of journal web sites matching the user's topic of interest, it poses a serious problem on part of the user to manually determine the most reputed journal for the publication of his/her research article. This paper proposes a framework for extraction of Journal information in a single interaction with the system.","PeriodicalId":320699,"journal":{"name":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A framework for extraction of journal information from scientific publishers web site\",\"authors\":\"Umamageswari Kumaresan, K. Ramanujam\",\"doi\":\"10.1109/ISCO.2016.7726937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"World Wide Web is a huge repository of information and the information is presented in the disparate formats which make automated processing a cumbersome task. Search engines are used to query the WWW. Students and scholars find it difficult to determine the appropriate journals for the research article publication since performing a keyword search using search engines like Google, Yahoo etc. presents them with a list of publication site where the user need to click through a series of link to reach the journal web site and go through the details of the journals like Impact Factor, SNIP etc. manually. Suppose if a publication web site is linked to hundreds of journal web sites matching the user's topic of interest, it poses a serious problem on part of the user to manually determine the most reputed journal for the publication of his/her research article. This paper proposes a framework for extraction of Journal information in a single interaction with the system.\",\"PeriodicalId\":320699,\"journal\":{\"name\":\"2016 10th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2016.7726937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2016.7726937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

万维网是一个巨大的信息库,信息以不同的格式呈现,这使得自动化处理成为一项繁琐的任务。搜索引擎用于查询WWW。学生和学者发现很难确定适合发表研究论文的期刊,因为使用谷歌、雅虎等搜索引擎进行关键字搜索时,他们会看到一个出版网站列表,用户需要点击一系列链接才能到达期刊网站,并手动浏览影响因子、SNIP等期刊的详细信息。假设一个出版网站链接到数百个与用户感兴趣的主题相匹配的期刊网站,这对部分用户来说是一个严重的问题,即手动确定发表他/她的研究文章的最知名的期刊。本文提出了一个在与系统的单次交互中提取期刊信息的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for extraction of journal information from scientific publishers web site
World Wide Web is a huge repository of information and the information is presented in the disparate formats which make automated processing a cumbersome task. Search engines are used to query the WWW. Students and scholars find it difficult to determine the appropriate journals for the research article publication since performing a keyword search using search engines like Google, Yahoo etc. presents them with a list of publication site where the user need to click through a series of link to reach the journal web site and go through the details of the journals like Impact Factor, SNIP etc. manually. Suppose if a publication web site is linked to hundreds of journal web sites matching the user's topic of interest, it poses a serious problem on part of the user to manually determine the most reputed journal for the publication of his/her research article. This paper proposes a framework for extraction of Journal information in a single interaction with the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信