{"title":"放牧草地系统维持和增加土壤有机碳的战略管理","authors":"I. Khalil, R. Francaviglia, B. Henry","doi":"10.5772/INTECHOPEN.84341","DOIUrl":null,"url":null,"abstract":"Understanding management-induced C sequestration potential in soils under agriculture, forestry, and other land use systems and their quantification to offset increasing greenhouse gases are of global concern. This chapter reviews management-induced changes in C storage in soils of grazing grassland systems, their impacts on ecosystem functions, and their adaptability and needs of protection across socio-economic and cultural settings. In general, improved management of grassland/pasture such as manuring/slurry application, liming and rotational grazing, and low to medium livestock units could sequester C more than under high intensity grazing conditions. Converting cultivated land to pasture, restoration of degraded land, and maximizing pasture phases in mixed-cropping, pasture with mixed-livestock, integrated forestry-pasturage of livestock (silvopastoral) and crop-forestry-pasturage of livestock (agro-silvopastoral) systems could also maintain and enhance soil organic C density (SOC ρ ). In areas receiving low precipitation and having high erodibility, grazing exclusion might restore degraded grasslands and increase SOC ρ . Yet, optimizing C sequestration rates, sowing of more productive grass varieties, judicial inorganic and organic fertilization, rotational grazing, and other climate-resilient approaches could improve overall farm productivity and profitability and attain sustainability in livestock farming systems.","PeriodicalId":356509,"journal":{"name":"CO2 Sequestration","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Strategic Management of Grazing Grassland Systems to Maintain and Increase Organic Carbon in Soils\",\"authors\":\"I. Khalil, R. Francaviglia, B. Henry\",\"doi\":\"10.5772/INTECHOPEN.84341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding management-induced C sequestration potential in soils under agriculture, forestry, and other land use systems and their quantification to offset increasing greenhouse gases are of global concern. This chapter reviews management-induced changes in C storage in soils of grazing grassland systems, their impacts on ecosystem functions, and their adaptability and needs of protection across socio-economic and cultural settings. In general, improved management of grassland/pasture such as manuring/slurry application, liming and rotational grazing, and low to medium livestock units could sequester C more than under high intensity grazing conditions. Converting cultivated land to pasture, restoration of degraded land, and maximizing pasture phases in mixed-cropping, pasture with mixed-livestock, integrated forestry-pasturage of livestock (silvopastoral) and crop-forestry-pasturage of livestock (agro-silvopastoral) systems could also maintain and enhance soil organic C density (SOC ρ ). In areas receiving low precipitation and having high erodibility, grazing exclusion might restore degraded grasslands and increase SOC ρ . Yet, optimizing C sequestration rates, sowing of more productive grass varieties, judicial inorganic and organic fertilization, rotational grazing, and other climate-resilient approaches could improve overall farm productivity and profitability and attain sustainability in livestock farming systems.\",\"PeriodicalId\":356509,\"journal\":{\"name\":\"CO2 Sequestration\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CO2 Sequestration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.84341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CO2 Sequestration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategic Management of Grazing Grassland Systems to Maintain and Increase Organic Carbon in Soils
Understanding management-induced C sequestration potential in soils under agriculture, forestry, and other land use systems and their quantification to offset increasing greenhouse gases are of global concern. This chapter reviews management-induced changes in C storage in soils of grazing grassland systems, their impacts on ecosystem functions, and their adaptability and needs of protection across socio-economic and cultural settings. In general, improved management of grassland/pasture such as manuring/slurry application, liming and rotational grazing, and low to medium livestock units could sequester C more than under high intensity grazing conditions. Converting cultivated land to pasture, restoration of degraded land, and maximizing pasture phases in mixed-cropping, pasture with mixed-livestock, integrated forestry-pasturage of livestock (silvopastoral) and crop-forestry-pasturage of livestock (agro-silvopastoral) systems could also maintain and enhance soil organic C density (SOC ρ ). In areas receiving low precipitation and having high erodibility, grazing exclusion might restore degraded grasslands and increase SOC ρ . Yet, optimizing C sequestration rates, sowing of more productive grass varieties, judicial inorganic and organic fertilization, rotational grazing, and other climate-resilient approaches could improve overall farm productivity and profitability and attain sustainability in livestock farming systems.