用于cnn明文空间纠错的数学诱导层恢复

Jonathan Ponader, S. Kundu, Yan Solihin
{"title":"用于cnn明文空间纠错的数学诱导层恢复","authors":"Jonathan Ponader, S. Kundu, Yan Solihin","doi":"10.1109/DSN48987.2021.00024","DOIUrl":null,"url":null,"abstract":"The increased use of Convolutional Neural Networks (CNN) in mission-critical systems has increased the need for robust and resilient networks in the face of both naturally occurring faults as well as security attacks. The lack of robustness and resiliency can lead to unreliable inference results. Current methods that address CNN robustness require hardware modification, network modification, or network duplication. This paper proposes MILR a software-based CNN error detection and error correction system that enables recovery from single and multi-bit errors. The recovery capabilities are based on mathematical relationships between the inputs, outputs, and parameters(weights) of the layers; exploiting these relationships allows the recovery of erroneous parameters (iveights) throughout a layer and the network. MILR is suitable for plaintext-space error correction (PSEC) given its ability to correct whole-weight and even whole-layer errors in CNNs.","PeriodicalId":222512,"journal":{"name":"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MILR: Mathematically Induced Layer Recovery for Plaintext Space Error Correction of CNNs\",\"authors\":\"Jonathan Ponader, S. Kundu, Yan Solihin\",\"doi\":\"10.1109/DSN48987.2021.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased use of Convolutional Neural Networks (CNN) in mission-critical systems has increased the need for robust and resilient networks in the face of both naturally occurring faults as well as security attacks. The lack of robustness and resiliency can lead to unreliable inference results. Current methods that address CNN robustness require hardware modification, network modification, or network duplication. This paper proposes MILR a software-based CNN error detection and error correction system that enables recovery from single and multi-bit errors. The recovery capabilities are based on mathematical relationships between the inputs, outputs, and parameters(weights) of the layers; exploiting these relationships allows the recovery of erroneous parameters (iveights) throughout a layer and the network. MILR is suitable for plaintext-space error correction (PSEC) given its ability to correct whole-weight and even whole-layer errors in CNNs.\",\"PeriodicalId\":222512,\"journal\":{\"name\":\"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN48987.2021.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN48987.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

卷积神经网络(CNN)在关键任务系统中的使用越来越多,这增加了对鲁棒性和弹性网络的需求,以应对自然发生的故障和安全攻击。缺乏鲁棒性和弹性会导致不可靠的推理结果。目前解决CNN健壮性的方法需要硬件修改、网络修改或网络复制。本文提出了一种基于软件的CNN错误检测和纠错系统,可以从单比特和多比特错误中恢复。恢复能力基于层的输入、输出和参数(权重)之间的数学关系;利用这些关系可以恢复整个层和网络中的错误参数(权重)。由于MILR能够纠正cnn中的全权重甚至全层错误,因此适合于明文空间纠错(PSEC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MILR: Mathematically Induced Layer Recovery for Plaintext Space Error Correction of CNNs
The increased use of Convolutional Neural Networks (CNN) in mission-critical systems has increased the need for robust and resilient networks in the face of both naturally occurring faults as well as security attacks. The lack of robustness and resiliency can lead to unreliable inference results. Current methods that address CNN robustness require hardware modification, network modification, or network duplication. This paper proposes MILR a software-based CNN error detection and error correction system that enables recovery from single and multi-bit errors. The recovery capabilities are based on mathematical relationships between the inputs, outputs, and parameters(weights) of the layers; exploiting these relationships allows the recovery of erroneous parameters (iveights) throughout a layer and the network. MILR is suitable for plaintext-space error correction (PSEC) given its ability to correct whole-weight and even whole-layer errors in CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信