快速降维的分层特征哈希

Bin Zhao, E. Xing
{"title":"快速降维的分层特征哈希","authors":"Bin Zhao, E. Xing","doi":"10.1109/CVPR.2014.263","DOIUrl":null,"url":null,"abstract":"Curse of dimensionality is a practical and challenging problem in image categorization, especially in cases with a large number of classes. Multi-class classification encounters severe computational and storage problems when dealing with these large scale tasks. In this paper, we propose hierarchical feature hashing to effectively reduce dimensionality of parameter space without sacrificing classification accuracy, and at the same time exploit information in semantic taxonomy among categories. We provide detailed theoretical analysis on our proposed hashing method. Moreover, experimental results on object recognition and scene classification further demonstrate the effectiveness of hierarchical feature hashing.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hierarchical Feature Hashing for Fast Dimensionality Reduction\",\"authors\":\"Bin Zhao, E. Xing\",\"doi\":\"10.1109/CVPR.2014.263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curse of dimensionality is a practical and challenging problem in image categorization, especially in cases with a large number of classes. Multi-class classification encounters severe computational and storage problems when dealing with these large scale tasks. In this paper, we propose hierarchical feature hashing to effectively reduce dimensionality of parameter space without sacrificing classification accuracy, and at the same time exploit information in semantic taxonomy among categories. We provide detailed theoretical analysis on our proposed hashing method. Moreover, experimental results on object recognition and scene classification further demonstrate the effectiveness of hierarchical feature hashing.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在图像分类中,特别是在类数比较多的情况下,维数缺失是一个比较实际和具有挑战性的问题。在处理这些大规模任务时,多类分类遇到了严重的计算和存储问题。本文提出了层次特征哈希,在不牺牲分类精度的前提下,有效地降低了参数空间的维数,同时利用了类别间语义分类的信息。我们对我们提出的哈希方法进行了详细的理论分析。此外,在目标识别和场景分类方面的实验结果进一步证明了层次特征哈希的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Feature Hashing for Fast Dimensionality Reduction
Curse of dimensionality is a practical and challenging problem in image categorization, especially in cases with a large number of classes. Multi-class classification encounters severe computational and storage problems when dealing with these large scale tasks. In this paper, we propose hierarchical feature hashing to effectively reduce dimensionality of parameter space without sacrificing classification accuracy, and at the same time exploit information in semantic taxonomy among categories. We provide detailed theoretical analysis on our proposed hashing method. Moreover, experimental results on object recognition and scene classification further demonstrate the effectiveness of hierarchical feature hashing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信