假设检验和确证

J. Sprenger, S. Hartmann
{"title":"假设检验和确证","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0009","DOIUrl":null,"url":null,"abstract":"According to Popper and other influential philosophers and scientists, scientific knowledge grows by repeatedly testing our best hypotheses. However, the interpretation of non-significant results—those that do not lead to a “rejection” of the tested hypothesis—poses a major philosophical challenge. To what extent do they corroborate the tested hypothesis or provide a reason to accept it? In this chapter, we prove two impossibility results for measures of corroboration that follow Popper’s criterion of measuring both predictive success and the testability of a hypothesis. Then we provide an axiomatic characterization of a more promising and scientifically useful concept of corroboration and discuss implications for the practice of hypothesis testing and the concept of statistical significance.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothesis Tests and Corroboration\",\"authors\":\"J. Sprenger, S. Hartmann\",\"doi\":\"10.1093/oso/9780199672110.003.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Popper and other influential philosophers and scientists, scientific knowledge grows by repeatedly testing our best hypotheses. However, the interpretation of non-significant results—those that do not lead to a “rejection” of the tested hypothesis—poses a major philosophical challenge. To what extent do they corroborate the tested hypothesis or provide a reason to accept it? In this chapter, we prove two impossibility results for measures of corroboration that follow Popper’s criterion of measuring both predictive success and the testability of a hypothesis. Then we provide an axiomatic characterization of a more promising and scientifically useful concept of corroboration and discuss implications for the practice of hypothesis testing and the concept of statistical significance.\",\"PeriodicalId\":140328,\"journal\":{\"name\":\"Bayesian Philosophy of Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Philosophy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780199672110.003.0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据波普尔和其他有影响力的哲学家和科学家的说法,科学知识是通过反复测试我们最好的假设而增长的。然而,对非显著结果的解释——那些不会导致“拒绝”被测试的假设的结果——提出了一个重大的哲学挑战。他们在多大程度上证实了经过验证的假设,或者提供了一个接受它的理由?在本章中,我们证明了两个佐证测量的不可能结果,它们遵循波普尔的测量预测成功和假设的可测试性的标准。然后,我们提供了一个更有前途和科学上有用的确证概念的公理化表征,并讨论了对假设检验和统计显著性概念的实践的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothesis Tests and Corroboration
According to Popper and other influential philosophers and scientists, scientific knowledge grows by repeatedly testing our best hypotheses. However, the interpretation of non-significant results—those that do not lead to a “rejection” of the tested hypothesis—poses a major philosophical challenge. To what extent do they corroborate the tested hypothesis or provide a reason to accept it? In this chapter, we prove two impossibility results for measures of corroboration that follow Popper’s criterion of measuring both predictive success and the testability of a hypothesis. Then we provide an axiomatic characterization of a more promising and scientifically useful concept of corroboration and discuss implications for the practice of hypothesis testing and the concept of statistical significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信