定义通信网络有效建模的规则和基本功能元素集

Dmytro Cherkasov
{"title":"定义通信网络有效建模的规则和基本功能元素集","authors":"Dmytro Cherkasov","doi":"10.18523/2617-3808.2021.4.101-107","DOIUrl":null,"url":null,"abstract":"Communication networks are complex information systems influenced by a vast amount of factors. It is critically important to forecast the paths that data take to verify the network, check its security and plan its updates. Model allows exploring processes that take place in the network without affecting performance and availability of a real network itself. With modelling it becomes possible to investigate the results of infrastructural changes introduced to the network before actually implementing them. It is important to be able to formally convert real network description into the model definition which preserves all data that is significant for network operation and skip data which is not. Outlining the rules for such conversion and using a limited set of basic functional components provide the ground for automatic model creation for the network of different levels of complexity.Proposed approach to modelling of communication networks is based on decomposition of the overall function of every particular real network component into a set of functions that belong to some predefined basic set. Functions of the basic set include L3 routing, L2 switching, packet filtering, NAT, etc. Model of a real network component is defined as a group of functional nodes each of which implements some function from the basic set.Configuration and current state of network components that influence its operation are also decomposed into elements each of which relates to some particular functional node. Configuration of network components is modelled as a set of configuration storage elements and current state is modelled as a set of current state storage elements.Links that connect real network components and links that connect functional nodes in the model are presented as singledirection channels that implement propagation of L2 frames thus simplifying the model due to excluding physical layer (L1) from the scope.Using the proposed approach to modelling may allow to formalize conversion of a real network descrip- tion to a model thus making automated modelling possible. By using a sufficient basic set of functional nodes it is possible to model the network containing components of any complexity level.","PeriodicalId":433538,"journal":{"name":"NaUKMA Research Papers. Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining the Rules and Basic Set of Funtional Elements for Effective Modeling of Communication Networks\",\"authors\":\"Dmytro Cherkasov\",\"doi\":\"10.18523/2617-3808.2021.4.101-107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication networks are complex information systems influenced by a vast amount of factors. It is critically important to forecast the paths that data take to verify the network, check its security and plan its updates. Model allows exploring processes that take place in the network without affecting performance and availability of a real network itself. With modelling it becomes possible to investigate the results of infrastructural changes introduced to the network before actually implementing them. It is important to be able to formally convert real network description into the model definition which preserves all data that is significant for network operation and skip data which is not. Outlining the rules for such conversion and using a limited set of basic functional components provide the ground for automatic model creation for the network of different levels of complexity.Proposed approach to modelling of communication networks is based on decomposition of the overall function of every particular real network component into a set of functions that belong to some predefined basic set. Functions of the basic set include L3 routing, L2 switching, packet filtering, NAT, etc. Model of a real network component is defined as a group of functional nodes each of which implements some function from the basic set.Configuration and current state of network components that influence its operation are also decomposed into elements each of which relates to some particular functional node. Configuration of network components is modelled as a set of configuration storage elements and current state is modelled as a set of current state storage elements.Links that connect real network components and links that connect functional nodes in the model are presented as singledirection channels that implement propagation of L2 frames thus simplifying the model due to excluding physical layer (L1) from the scope.Using the proposed approach to modelling may allow to formalize conversion of a real network descrip- tion to a model thus making automated modelling possible. By using a sufficient basic set of functional nodes it is possible to model the network containing components of any complexity level.\",\"PeriodicalId\":433538,\"journal\":{\"name\":\"NaUKMA Research Papers. Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NaUKMA Research Papers. Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18523/2617-3808.2021.4.101-107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NaUKMA Research Papers. Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18523/2617-3808.2021.4.101-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通信网络是受多种因素影响的复杂信息系统。预测数据在验证网络、检查其安全性和计划其更新时所采取的路径至关重要。模型允许探索发生在网络中的进程,而不会影响实际网络本身的性能和可用性。有了建模,就有可能在实际实施之前调查引入网络的基础设施变化的结果。能够将真实的网络描述形式化地转换为模型定义是很重要的,模型定义保留了所有对网络运行有意义的数据,而忽略了不重要的数据。概述这种转换的规则并使用一组有限的基本功能组件,为为不同复杂程度的网络自动创建模型提供了基础。本文提出的通信网络建模方法是将实际网络中每个特定组件的整体功能分解为属于某个预定义基本集的功能集。基本集的功能包括L3路由、L2交换、包过滤、NAT等。实际网络组件的模型被定义为一组功能节点,每个功能节点实现基本集合中的某些功能。影响其运行的网络组件的配置和当前状态也被分解为元素,每个元素与某个特定的功能节点相关。将网络组件的配置建模为一组配置存储元素,将当前状态建模为一组当前状态存储元素。连接真实网络组件的链路和连接模型中功能节点的链路被呈现为单向通道,实现L2帧的传播,从而由于将物理层(L1)排除在范围之外而简化了模型。使用提出的建模方法可以将真实网络描述形式化转换为模型,从而使自动化建模成为可能。通过使用足够的基本功能节点集,可以对包含任何复杂程度的组件的网络进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining the Rules and Basic Set of Funtional Elements for Effective Modeling of Communication Networks
Communication networks are complex information systems influenced by a vast amount of factors. It is critically important to forecast the paths that data take to verify the network, check its security and plan its updates. Model allows exploring processes that take place in the network without affecting performance and availability of a real network itself. With modelling it becomes possible to investigate the results of infrastructural changes introduced to the network before actually implementing them. It is important to be able to formally convert real network description into the model definition which preserves all data that is significant for network operation and skip data which is not. Outlining the rules for such conversion and using a limited set of basic functional components provide the ground for automatic model creation for the network of different levels of complexity.Proposed approach to modelling of communication networks is based on decomposition of the overall function of every particular real network component into a set of functions that belong to some predefined basic set. Functions of the basic set include L3 routing, L2 switching, packet filtering, NAT, etc. Model of a real network component is defined as a group of functional nodes each of which implements some function from the basic set.Configuration and current state of network components that influence its operation are also decomposed into elements each of which relates to some particular functional node. Configuration of network components is modelled as a set of configuration storage elements and current state is modelled as a set of current state storage elements.Links that connect real network components and links that connect functional nodes in the model are presented as singledirection channels that implement propagation of L2 frames thus simplifying the model due to excluding physical layer (L1) from the scope.Using the proposed approach to modelling may allow to formalize conversion of a real network descrip- tion to a model thus making automated modelling possible. By using a sufficient basic set of functional nodes it is possible to model the network containing components of any complexity level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信