{"title":"人类智能和网络神经科学","authors":"A. Barbey","doi":"10.1017/9781108635462.009","DOIUrl":null,"url":null,"abstract":"Flexibility is central to human intelligence and is made possible by the brain’s remarkable capacity to reconfigure itself – to continually update prior knowledge on the basis of new information and to actively generate internal predictions that guide adaptive behavior and decision making. Rather than lying dormant until stimulated, contemporary research conceives of the brain as a dynamic and active inference generator that anticipates incoming sensory inputs, forming hypotheses about that world that can be tested against sensory signals that arrive in the brain (Clark, 2013; Friston, 2010). Plasticity is therefore critical for the emergence of human intelligence, providing a powerful mechanism for updating prior beliefs, generating dynamic predictions about the world, and adapting in response to ongoing changes in the environment (Barbey, 2018). This perspective provides a catalyst for contemporary research on human intelligence, breaking away from the classic view that general intelligence (g) originates from individual differences in a fixed set of cortical regions or a singular brain network (for reviews, see Haier, 2017; Posner & Barbey, 2020). Early studies investigating the neurobiology of g focused on the lateral prefrontal cortex (Barbey, Colom, & Grafman, 2013b; Duncan et al., 2000), motivating an influential theory based on the role of this region in cognitive control functions for intelligent behavior (Duncan & Owen, 2000). The later emergence of network-based theories reflected an effort to examine the neurobiology of intelligence through a wider lens, accounting for individual differences in g on the basis of broadly distributed networks. For example, the Parietal-Frontal Integration Theory (P-FIT) was the first to propose that “a discrete parieto-frontal network underlies intelligence” (Jung & Haier, 2007) and that g reflects the capacity of this network to evaluate and test hypotheses for problem-solving (see also Barbey et al., 2012). A central feature","PeriodicalId":206489,"journal":{"name":"The Cambridge Handbook of Intelligence and Cognitive Neuroscience","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Intelligence and Network Neuroscience\",\"authors\":\"A. Barbey\",\"doi\":\"10.1017/9781108635462.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexibility is central to human intelligence and is made possible by the brain’s remarkable capacity to reconfigure itself – to continually update prior knowledge on the basis of new information and to actively generate internal predictions that guide adaptive behavior and decision making. Rather than lying dormant until stimulated, contemporary research conceives of the brain as a dynamic and active inference generator that anticipates incoming sensory inputs, forming hypotheses about that world that can be tested against sensory signals that arrive in the brain (Clark, 2013; Friston, 2010). Plasticity is therefore critical for the emergence of human intelligence, providing a powerful mechanism for updating prior beliefs, generating dynamic predictions about the world, and adapting in response to ongoing changes in the environment (Barbey, 2018). This perspective provides a catalyst for contemporary research on human intelligence, breaking away from the classic view that general intelligence (g) originates from individual differences in a fixed set of cortical regions or a singular brain network (for reviews, see Haier, 2017; Posner & Barbey, 2020). Early studies investigating the neurobiology of g focused on the lateral prefrontal cortex (Barbey, Colom, & Grafman, 2013b; Duncan et al., 2000), motivating an influential theory based on the role of this region in cognitive control functions for intelligent behavior (Duncan & Owen, 2000). The later emergence of network-based theories reflected an effort to examine the neurobiology of intelligence through a wider lens, accounting for individual differences in g on the basis of broadly distributed networks. For example, the Parietal-Frontal Integration Theory (P-FIT) was the first to propose that “a discrete parieto-frontal network underlies intelligence” (Jung & Haier, 2007) and that g reflects the capacity of this network to evaluate and test hypotheses for problem-solving (see also Barbey et al., 2012). A central feature\",\"PeriodicalId\":206489,\"journal\":{\"name\":\"The Cambridge Handbook of Intelligence and Cognitive Neuroscience\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Cambridge Handbook of Intelligence and Cognitive Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108635462.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cambridge Handbook of Intelligence and Cognitive Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108635462.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexibility is central to human intelligence and is made possible by the brain’s remarkable capacity to reconfigure itself – to continually update prior knowledge on the basis of new information and to actively generate internal predictions that guide adaptive behavior and decision making. Rather than lying dormant until stimulated, contemporary research conceives of the brain as a dynamic and active inference generator that anticipates incoming sensory inputs, forming hypotheses about that world that can be tested against sensory signals that arrive in the brain (Clark, 2013; Friston, 2010). Plasticity is therefore critical for the emergence of human intelligence, providing a powerful mechanism for updating prior beliefs, generating dynamic predictions about the world, and adapting in response to ongoing changes in the environment (Barbey, 2018). This perspective provides a catalyst for contemporary research on human intelligence, breaking away from the classic view that general intelligence (g) originates from individual differences in a fixed set of cortical regions or a singular brain network (for reviews, see Haier, 2017; Posner & Barbey, 2020). Early studies investigating the neurobiology of g focused on the lateral prefrontal cortex (Barbey, Colom, & Grafman, 2013b; Duncan et al., 2000), motivating an influential theory based on the role of this region in cognitive control functions for intelligent behavior (Duncan & Owen, 2000). The later emergence of network-based theories reflected an effort to examine the neurobiology of intelligence through a wider lens, accounting for individual differences in g on the basis of broadly distributed networks. For example, the Parietal-Frontal Integration Theory (P-FIT) was the first to propose that “a discrete parieto-frontal network underlies intelligence” (Jung & Haier, 2007) and that g reflects the capacity of this network to evaluate and test hypotheses for problem-solving (see also Barbey et al., 2012). A central feature