一种全文档手写识别的缓存语言模型

Volkmar Frinken, Dimosthenis Karatzas, Andreas Fischer
{"title":"一种全文档手写识别的缓存语言模型","authors":"Volkmar Frinken, Dimosthenis Karatzas, Andreas Fischer","doi":"10.1109/DAS.2014.56","DOIUrl":null,"url":null,"abstract":"With increasing computational power, the trend in unconstrained text recognition is going towards whole document processing. For this task, more sophisticated language models can be employed. One approach is to take advantage the fact that the text of a document normally deals with a specific topic and hence the word occurrence probability is biased. Cache language models combine information about recent words, the cache, with a general statistical language model to increase the recognition rate. In this work we introduce a modified version of the cache language model to the task of handwriting recognition, where the N-best recognition output of the entire document is used to refine the language model for a consecutive recognition pass. An experimental evaluation on the IAM database demonstrates that the word error rate can be reduced with the proposed cache language model.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Cache Language Model for Whole Document Handwriting Recognition\",\"authors\":\"Volkmar Frinken, Dimosthenis Karatzas, Andreas Fischer\",\"doi\":\"10.1109/DAS.2014.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing computational power, the trend in unconstrained text recognition is going towards whole document processing. For this task, more sophisticated language models can be employed. One approach is to take advantage the fact that the text of a document normally deals with a specific topic and hence the word occurrence probability is biased. Cache language models combine information about recent words, the cache, with a general statistical language model to increase the recognition rate. In this work we introduce a modified version of the cache language model to the task of handwriting recognition, where the N-best recognition output of the entire document is used to refine the language model for a consecutive recognition pass. An experimental evaluation on the IAM database demonstrates that the word error rate can be reduced with the proposed cache language model.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着计算能力的提高,无约束文本识别的趋势是向全文档处理方向发展。对于这项任务,可以使用更复杂的语言模型。一种方法是利用文档文本通常处理特定主题的事实,因此单词出现概率是有偏差的。缓存语言模型将缓存的最新单词信息与一般统计语言模型相结合,以提高识别率。在这项工作中,我们将缓存语言模型的修改版本引入到手写识别任务中,其中使用整个文档的n个最佳识别输出来改进语言模型,以实现连续识别。在IAM数据库上的实验评估表明,该缓存语言模型可以降低单词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cache Language Model for Whole Document Handwriting Recognition
With increasing computational power, the trend in unconstrained text recognition is going towards whole document processing. For this task, more sophisticated language models can be employed. One approach is to take advantage the fact that the text of a document normally deals with a specific topic and hence the word occurrence probability is biased. Cache language models combine information about recent words, the cache, with a general statistical language model to increase the recognition rate. In this work we introduce a modified version of the cache language model to the task of handwriting recognition, where the N-best recognition output of the entire document is used to refine the language model for a consecutive recognition pass. An experimental evaluation on the IAM database demonstrates that the word error rate can be reduced with the proposed cache language model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信