网络钓鱼url分类的机器学习算法评估

Habiba Bouijij, A. Berqia
{"title":"网络钓鱼url分类的机器学习算法评估","authors":"Habiba Bouijij, A. Berqia","doi":"10.1109/ISAECT53699.2021.9668489","DOIUrl":null,"url":null,"abstract":"Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra_Tree (ET), Ada_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features.","PeriodicalId":137636,"journal":{"name":"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Algorithms Evaluation for Phishing URLs Classification\",\"authors\":\"Habiba Bouijij, A. Berqia\",\"doi\":\"10.1109/ISAECT53699.2021.9668489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra_Tree (ET), Ada_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features.\",\"PeriodicalId\":137636,\"journal\":{\"name\":\"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAECT53699.2021.9668489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAECT53699.2021.9668489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络钓鱼网址是一种基于伪造网址的网络攻击。尽管网络安全努力,网络钓鱼URL攻击的数量仍在继续增加。根据反网络钓鱼工作组(APWG)的数据,2020年观察到的网络钓鱼网站数量为1520832个,在一年内翻了一番。可以使用各种算法、技术和方法来构建网络钓鱼URL检测和分类模型。从我们的阅读中,我们观察到机器学习(ML)是最近用于以有效和主动的方式检测和分类网络钓鱼URL的方法之一。在本文中,我们评估了十一种最常用的机器学习算法,如决策树(DT)、最近邻(KNN)、梯度增强(GB)、逻辑回归(LR)、Naïve贝叶斯(NB)、随机森林(RF)、支持向量机(SVM)、神经网络(NN)、x- tra_tree (ET)、Ada_Boost (AB)和Bagging (B)。为此,我们计算了每种算法的检测精度度量,并使用词法分析来提取URL特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Algorithms Evaluation for Phishing URLs Classification
Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra_Tree (ET), Ada_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信