验证弹性层析模拟研究的可行性

C. Sumi, T. Sudou
{"title":"验证弹性层析模拟研究的可行性","authors":"C. Sumi, T. Sudou","doi":"10.1109/IEMBS.1998.745562","DOIUrl":null,"url":null,"abstract":"The pathological state of living soft tissue highly correlates with quasi-static mechanical properties, particularly, elasticity. With such consideration in mind, the authors previously developed the iterative 2D ultrasonic RF-echo phase matching method that allowed providing them the considerably accurate estimates of 2D strain distributions generated in vivo in soft tissues by heart motion/extracorporeally applied pressures or very low frequency vibrations. Furthermore, the authors proposed a novel inverse problem that determined a relative shear modulus distribution with respect to reference shear moduli only from measured strain distributions under the assumption that no mechanical source exists in the ROI. However, as previously demonstrated, due to the combination of noise in measurement data and improper configurations of mechanical sources/reference regions, the problem is inevitably ill-conditioned in real-world applications. Thus, to uniquely determine the acceptable approximation to the original target distribution despite their occurrence, the authors developed a robust reconstruction method in conjunction with a so-called regularization method. To verify the feasibility of a whole technique, i.e., elasticity tomography, reconstruction is carried out using RF-echo data simulated on a simple soft tissue model.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of the feasibility of elasticity tomography-simulation study\",\"authors\":\"C. Sumi, T. Sudou\",\"doi\":\"10.1109/IEMBS.1998.745562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pathological state of living soft tissue highly correlates with quasi-static mechanical properties, particularly, elasticity. With such consideration in mind, the authors previously developed the iterative 2D ultrasonic RF-echo phase matching method that allowed providing them the considerably accurate estimates of 2D strain distributions generated in vivo in soft tissues by heart motion/extracorporeally applied pressures or very low frequency vibrations. Furthermore, the authors proposed a novel inverse problem that determined a relative shear modulus distribution with respect to reference shear moduli only from measured strain distributions under the assumption that no mechanical source exists in the ROI. However, as previously demonstrated, due to the combination of noise in measurement data and improper configurations of mechanical sources/reference regions, the problem is inevitably ill-conditioned in real-world applications. Thus, to uniquely determine the acceptable approximation to the original target distribution despite their occurrence, the authors developed a robust reconstruction method in conjunction with a so-called regularization method. To verify the feasibility of a whole technique, i.e., elasticity tomography, reconstruction is carried out using RF-echo data simulated on a simple soft tissue model.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.745562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.745562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

活体软组织的病理状态与准静态力学性能,特别是弹性力学性能密切相关。考虑到这一点,作者之前开发了迭代二维超声射频回波相位匹配方法,该方法允许他们相当准确地估计由心脏运动/体外施加压力或极低频振动在体内软组织中产生的二维应变分布。此外,作者提出了一个新的反问题,在假设ROI中不存在机械源的情况下,仅从测量的应变分布确定相对剪切模量分布。然而,如前所述,由于测量数据中的噪声和机械源/参考区域的不适当配置的结合,该问题在实际应用中不可避免地是病态的。因此,为了唯一地确定原始目标分布的可接受近似值,尽管它们发生了,作者开发了一种鲁棒重建方法与所谓的正则化方法相结合。为了验证弹性层析成像这一整体技术的可行性,我们利用在一个简单的软组织模型上模拟的射频回波数据进行了重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of the feasibility of elasticity tomography-simulation study
The pathological state of living soft tissue highly correlates with quasi-static mechanical properties, particularly, elasticity. With such consideration in mind, the authors previously developed the iterative 2D ultrasonic RF-echo phase matching method that allowed providing them the considerably accurate estimates of 2D strain distributions generated in vivo in soft tissues by heart motion/extracorporeally applied pressures or very low frequency vibrations. Furthermore, the authors proposed a novel inverse problem that determined a relative shear modulus distribution with respect to reference shear moduli only from measured strain distributions under the assumption that no mechanical source exists in the ROI. However, as previously demonstrated, due to the combination of noise in measurement data and improper configurations of mechanical sources/reference regions, the problem is inevitably ill-conditioned in real-world applications. Thus, to uniquely determine the acceptable approximation to the original target distribution despite their occurrence, the authors developed a robust reconstruction method in conjunction with a so-called regularization method. To verify the feasibility of a whole technique, i.e., elasticity tomography, reconstruction is carried out using RF-echo data simulated on a simple soft tissue model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信