基于层次密度的聚类选择的混合方法

Claudia Malzer, M. Baum
{"title":"基于层次密度的聚类选择的混合方法","authors":"Claudia Malzer, M. Baum","doi":"10.1109/MFI49285.2020.9235263","DOIUrl":null,"url":null,"abstract":"HDBSCAN is a density-based clustering algorithm that constructs a cluster hierarchy tree and then uses a specific stability measure to extract flat clusters from the tree. We show how the application of an additional threshold value can result in a combination of DBSCAN* and HDBSCAN clusters, and demonstrate potential benefits of this hybrid approach when clustering data of variable densities. In particular, our approach is useful in scenarios where we require a low minimum cluster size but want to avoid an abundance of micro-clusters in high-density regions. The method can directly be applied to HDBSCAN's tree of cluster candidates and does not require any modifications to the hierarchy itself. It can easily be integrated as an addition to existing HDBSCAN implementations.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"A Hybrid Approach To Hierarchical Density-based Cluster Selection\",\"authors\":\"Claudia Malzer, M. Baum\",\"doi\":\"10.1109/MFI49285.2020.9235263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HDBSCAN is a density-based clustering algorithm that constructs a cluster hierarchy tree and then uses a specific stability measure to extract flat clusters from the tree. We show how the application of an additional threshold value can result in a combination of DBSCAN* and HDBSCAN clusters, and demonstrate potential benefits of this hybrid approach when clustering data of variable densities. In particular, our approach is useful in scenarios where we require a low minimum cluster size but want to avoid an abundance of micro-clusters in high-density regions. The method can directly be applied to HDBSCAN's tree of cluster candidates and does not require any modifications to the hierarchy itself. It can easily be integrated as an addition to existing HDBSCAN implementations.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

HDBSCAN是一种基于密度的聚类算法,它构建一个聚类层次树,然后使用特定的稳定性措施从树中提取平面聚类。我们展示了额外阈值的应用如何导致DBSCAN*和HDBSCAN集群的组合,并展示了这种混合方法在聚类可变密度数据时的潜在好处。特别是,我们的方法在需要最小簇大小较低但又希望避免高密度区域中大量微簇的情况下非常有用。该方法可以直接应用于HDBSCAN的候选集群树,并且不需要对层次结构本身进行任何修改。它可以很容易地集成为现有HDBSCAN实现的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Approach To Hierarchical Density-based Cluster Selection
HDBSCAN is a density-based clustering algorithm that constructs a cluster hierarchy tree and then uses a specific stability measure to extract flat clusters from the tree. We show how the application of an additional threshold value can result in a combination of DBSCAN* and HDBSCAN clusters, and demonstrate potential benefits of this hybrid approach when clustering data of variable densities. In particular, our approach is useful in scenarios where we require a low minimum cluster size but want to avoid an abundance of micro-clusters in high-density regions. The method can directly be applied to HDBSCAN's tree of cluster candidates and does not require any modifications to the hierarchy itself. It can easily be integrated as an addition to existing HDBSCAN implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信