Zheng Zhou, George Eichman, T. Martin, T. Goodrich, Kathy Bui, T. Hasanali, J. Cahalen
{"title":"无镍选择电接触镀堆栈使用纳米结晶银合金","authors":"Zheng Zhou, George Eichman, T. Martin, T. Goodrich, Kathy Bui, T. Hasanali, J. Cahalen","doi":"10.1109/HOLM.2015.7355126","DOIUrl":null,"url":null,"abstract":"There is an increased interest in eliminating nickel from all wearable/personal electronics surfaces to prevent contact dermatitis and other allergic reactions caused by nickel. This paper presents a new metal finish for contact surfaces based on a unique nano-crystalline silver alloy (NCSA) that eliminates the need for a nickel barrier layer. The performance of the NCSA-based finish is evaluated using standard industry qualification tests commonly associated with high reliability electronic connectors, including durability, mixed flowing gas, neutral salt spray, heat & humidity, and immersion corrosion. Preliminary results show that the NCSA stack, without the use of a nickel barrier layer, can provide equivalent or better durability and corrosion resistance when compared to an industry standard gold/nickel-sulfamate stack, while also acting as a diffusion barrier for Cu thus preserving its electrical performance as a final finish. In contrast with traditional silver coatings, the NCSA is thermally stable, maintaining its nano-crystalline grain structure and durability performance. The new NCSA stack contact finish shows positive performance in this initial testing suite, and represents a promising new nickel-free option for wearable electronic device electrical contact surfaces.","PeriodicalId":448541,"journal":{"name":"2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nickel-free option for electrical contact plating stack using a nano-crystalline silver alloy\",\"authors\":\"Zheng Zhou, George Eichman, T. Martin, T. Goodrich, Kathy Bui, T. Hasanali, J. Cahalen\",\"doi\":\"10.1109/HOLM.2015.7355126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increased interest in eliminating nickel from all wearable/personal electronics surfaces to prevent contact dermatitis and other allergic reactions caused by nickel. This paper presents a new metal finish for contact surfaces based on a unique nano-crystalline silver alloy (NCSA) that eliminates the need for a nickel barrier layer. The performance of the NCSA-based finish is evaluated using standard industry qualification tests commonly associated with high reliability electronic connectors, including durability, mixed flowing gas, neutral salt spray, heat & humidity, and immersion corrosion. Preliminary results show that the NCSA stack, without the use of a nickel barrier layer, can provide equivalent or better durability and corrosion resistance when compared to an industry standard gold/nickel-sulfamate stack, while also acting as a diffusion barrier for Cu thus preserving its electrical performance as a final finish. In contrast with traditional silver coatings, the NCSA is thermally stable, maintaining its nano-crystalline grain structure and durability performance. The new NCSA stack contact finish shows positive performance in this initial testing suite, and represents a promising new nickel-free option for wearable electronic device electrical contact surfaces.\",\"PeriodicalId\":448541,\"journal\":{\"name\":\"2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOLM.2015.7355126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2015.7355126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nickel-free option for electrical contact plating stack using a nano-crystalline silver alloy
There is an increased interest in eliminating nickel from all wearable/personal electronics surfaces to prevent contact dermatitis and other allergic reactions caused by nickel. This paper presents a new metal finish for contact surfaces based on a unique nano-crystalline silver alloy (NCSA) that eliminates the need for a nickel barrier layer. The performance of the NCSA-based finish is evaluated using standard industry qualification tests commonly associated with high reliability electronic connectors, including durability, mixed flowing gas, neutral salt spray, heat & humidity, and immersion corrosion. Preliminary results show that the NCSA stack, without the use of a nickel barrier layer, can provide equivalent or better durability and corrosion resistance when compared to an industry standard gold/nickel-sulfamate stack, while also acting as a diffusion barrier for Cu thus preserving its electrical performance as a final finish. In contrast with traditional silver coatings, the NCSA is thermally stable, maintaining its nano-crystalline grain structure and durability performance. The new NCSA stack contact finish shows positive performance in this initial testing suite, and represents a promising new nickel-free option for wearable electronic device electrical contact surfaces.