使用低级和语义特征对消费者照片进行室内和室外分类

Jiebo Luo, A. Savakis
{"title":"使用低级和语义特征对消费者照片进行室内和室外分类","authors":"Jiebo Luo, A. Savakis","doi":"10.1109/ICIP.2001.958601","DOIUrl":null,"url":null,"abstract":"Scene categorization to indoor vs outdoor may be approached by using low-level features for inferring high-level information about the image. Low-level features such as color and texture have been used extensively in image understanding research, however, they cannot solve the problem completely. We propose the use of a Bayesian network for integrating knowledge from low-level and semantic features for indoor vs outdoor classification of images. Using ground truth data for sky and grass detection, we demonstrate that the classification performance can be significantly improved when semantic features are employed in the classification process.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Indoor vs outdoor classification of consumer photographs using low-level and semantic features\",\"authors\":\"Jiebo Luo, A. Savakis\",\"doi\":\"10.1109/ICIP.2001.958601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene categorization to indoor vs outdoor may be approached by using low-level features for inferring high-level information about the image. Low-level features such as color and texture have been used extensively in image understanding research, however, they cannot solve the problem completely. We propose the use of a Bayesian network for integrating knowledge from low-level and semantic features for indoor vs outdoor classification of images. Using ground truth data for sky and grass detection, we demonstrate that the classification performance can be significantly improved when semantic features are employed in the classification process.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

摘要

室内与室外的场景分类可以通过使用低级特征来推断图像的高级信息来实现。颜色和纹理等底层特征在图像理解研究中得到了广泛的应用,但它们并不能完全解决图像理解问题。我们建议使用贝叶斯网络来整合来自低级和语义特征的知识,用于室内和室外图像分类。使用地面真值数据进行天空和草地检测,我们证明了在分类过程中使用语义特征可以显著提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor vs outdoor classification of consumer photographs using low-level and semantic features
Scene categorization to indoor vs outdoor may be approached by using low-level features for inferring high-level information about the image. Low-level features such as color and texture have been used extensively in image understanding research, however, they cannot solve the problem completely. We propose the use of a Bayesian network for integrating knowledge from low-level and semantic features for indoor vs outdoor classification of images. Using ground truth data for sky and grass detection, we demonstrate that the classification performance can be significantly improved when semantic features are employed in the classification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信